
Masaryk University
Faculty of Informatics

A Crash Reporting Library for
Android

Master’s Thesis

Marek Osvald

Brno, Autumn 2017

Masaryk University
Faculty of Informatics

A Crash Reporting Library for
Android

Master’s Thesis

Marek Osvald

Brno, Autumn 2017

This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Marek Osvald

Advisor: prof. RNDr. Václav Matyáš M.Sc. Ph.D.

i

Acknowledgement

This work was carried out during the years 2016-2017 at AVG Technolo-
gies CZ and the Faculty of Informatics at the Masaryk University in
Brno. It is a pleasure to use this page to sincerely thank all the people
contributing or otherwise involved in the development of this thesis.

I owe my deepest gratitude to my thesis supervisor, professor
Václav Matyáš. His continuous support helped me to write a thesis
worthy of a prestigious institution such as the Masaryk University.

I am deeply grateful to my technical supervisor Petr Koudelka for
his continuous optimism and guidance during the development. His
advise helped me on countless occasions.

I would like to express my most sincere gratitude to Philip M.
Gammon who answered my English-related questions and selflessly
offered proofreading this text.

I am particularly grateful for support given by Katarína Varačková
and Petr Buno during the initial prototype development. Their contri-
bution helped to speed up the work on the prototype tremendously
and it was truly a pleasure to work with both of them.

I want to express my gratitude to Marcel Kappler and Marting Šůs
for their help integrating the solution with AVG’s existing infrastruc-
ture. Their help was simply invaluable.

I am also in debt to Jan Švábenský who helped me to devise the
testing strategy and for his insight during integration testing. His
expertise helped me to learn a great lot about testing, QA automation
and the underlying technology.

I would also like to thank Lucie Lénertová, Karel Ovesný, Libor
Jancek, and Dominik Pokora for their comments during the GUI sup-
port tool development.

And last but definitely not least, I owe an endless debt of gratitude
to my parents, Martina Osvaldová and Martin Osvald. They have tire-
lessly supported me throughout my entire academic career. Without
their love, emotional and financial support this thesis would have
never been possible. Thank you for being the way you are and helping
me in every single imaginable way to achieve my goals and dreams.
This text is dedicated to you.

iii

Abstract

The goal of this master’s thesis is to develop a universal and adapt-
able solution for crash reporting of Android applications. The thesis
describes the entire development process of such solution, from its
architecture concepts to the process of deployment including a test
plan and means of its automation.

iv

Keywords

Android, crash reporting, Google Play, JUnit, Mockito, PowerMock,
Appium, TSD, autolib, Final-CI, Artifactory

v

Contents

1 Introduction 1

2 The Problem Defined 5
2.1 The Nature of Failures on Android 5
2.2 Reporting Crashes . 5

3 Technologies Used 9
3.1 Programming Languages 9
3.2 Tools . 11
3.3 Libraries . 12

4 Implementation 15
4.1 Analysis of Existing Solutions 15

4.1.1 ACRA . 15
4.1.2 HockeyApp . 16
4.1.3 Crashlytics . 17

4.2 Architecture Concept . 21
4.3 Handling Managed Code Crashes 23

4.3.1 Collecting Metadata 26
4.4 Handling Native Code Crashes 28

4.4.1 Google Breakpad Integration 31
4.4.2 Initialising the Native Code Handler 34
4.4.3 Collecting Metadata 34

4.5 Notifying the User . 35
4.6 Providing Crash Data . 41

4.6.1 Default Synchronous Providers 42
4.6.2 Default Asynchronous Providers 44

4.7 Configuration Management 47
4.7.1 Application Identification Options 49
4.7.2 User Notification Options 50
4.7.3 Provider Options 51
4.7.4 Data Publishing Options 51
4.7.5 Connection Options 52
4.7.6 Logging Options 53

4.8 Packaging of collected data 53
4.8.1 The BinPacker File Format 53

vii

4.8.2 BinPacker API . 55
4.8.3 Support Tools . 56

4.9 Data Publishing . 57
4.9.1 CAP Crash Publisher 58
4.9.2 External Storage Publisher 60
4.9.3 Publishing Strategies 60

4.10 Connection Handling . 61
4.10.1 Offline Publisher 63
4.10.2 Publishing Attempts 63

4.11 Logging . 64
4.11.1 Logging API . 65

4.12 Testing . 66
4.12.1 Unit Testing . 66
4.12.2 Integration Testing 68
4.12.3 Mock CAP Server 73
4.12.4 Automation . 74

4.13 Building . 75
4.13.1 Building the Library 75
4.13.2 Building the Simulator 76
4.13.3 Building the Mock CAP Server 78
4.13.4 Additional Gradle Tasks 79

4.14 Publishing . 80

5 Conclusion 83

Bibliography 85

viii

List of Figures

2.1 Standard Android 7.1.2 Crash Dialogs. 6
4.1 Example of ACRA’s Dialog Window. 17
4.2 HockeyApp’s Dialog Window. 18
4.3 Example of HockeyApp Server Crash Reports. 19
4.4 Example of Fabric Crashlytics Dashboard. 20
4.5 Sequence Diagram: Handling Managed Code

Crashes. 24
4.6 Sequence Diagram: Handling Native Code

Crashes. 30
4.7 Google Breakpad Architecture. 32
4.8 Example of Error Activity Stylised as the Windows 10

BSoD. 37
4.9 Example of the Crash Reporting Library Dialog

Window. 38
4.10 Example of the Crash Reporting Library Error

Notification. 39
4.11 Example of the Crash Reporting Library Toast

Message. 40
4.12 Sample Memory Heap Dump Processed in Eclipse

MAT. 43
4.13 Class Diagram: Synchronous Providers. 44
4.14 Class Diagram: Asynchronous Providers. 45
4.15 Visualisation of the BinPacker File Format. 54
4.16 The BinUnPacker Batch Tool. 56
4.17 The BinUnPackerUI GUI Tool. 57
4.18 Class Diagram: Logging. 65
4.19 Example of a TSD Opened in TSD Debugger. 75
4.20 Example of a Test Run Configuration in Final-CI. 76
4.21 The Crash Reporting Library Artifactory Dossier. 80

ix

1 Introduction

AVG Technologies is one of the leading security software companies
targeting the global market. While traditionally being the most known
for its PC products, AVG has launched its mobile application portfolio
in 2010. In order to improve the quality of its products developed for
mobile platforms, AVG has launched a series of research and develop-
ment projects in order to improve the quality of its mobile application
portfolio and to streamline and facilitate the development process.
The goal of one of these projects was to research the means of report-
ing application errors and to provide a universal solution that would
support all of AVG’s products for the Android platform.

Since AVG had already owned an infrastructure for handling crash
reports of desktop applications, the desired goal was to implement
a solution utilising the aforementioned infrastructure but also, not
to be entirely dependent on it in case of any changes in technology.
The proposed solution was meant to also utilise existing build and
automation framework available at AVG.

This thesis describes the entire development process of a custom
crash reporting solution for Android applications within its five chap-
ters. This chapter briefly describes the contents of this thesis.

Chapter 2 defines the problems this thesis aims to solve. Section 2.1
describes the nature of crashes on Android and how they manifest to
the user. It also describes the differences between managed code and
native code crashes. Section 2.2 describes the phases of the develop-
ment cycle where crash reporting might be required and their specifics.
The section also states the questions this thesis aims to answer.

Chapter 3 describes the technologies used during the development
of the proposed solution. Section 3.1 describes the programming lan-
guages chosen for implementation and testing. Section 3.2 describes
tools that aided the development process. And finally, Section 3.3 de-
scribes both open-source and proprietary libraries that are used by
the proposed crash reporting solution.

Chapter 4 describes the actual implementation of the proposed so-
lution. Section 4.1 starts the chapter with an analysis of crash reporting
solutions available for Android applications. This section compares

1

1. Introduction

their respective strengths and weaknesses and argues the point for
developing a custom crash reporting solution.

Section 4.2 explains the basic architecture concept of the proposed
solution, how the library is structured and its fundamental building
blocks and terminology.

Section 4.3 describes the API for detecting and handling managed
code crashes and the process of collecting crash report related meta-
data.

Section 4.4 explains the process of detection and handling native
code crashes and the integration of the Google Breakpad library used
for generating memory minidumps. The section also describes the
differences between collecting metadata for managed code crashes
and native code crashes.

Section 4.5 describes how the proposed solution replaces the de-
fault Android crash dialog window with a customisable user notifica-
tion. The section provides illustrations of possible configurations and
explains the difference in behaviour between different build configu-
rations of the Crash Reporting Library.

Section 4.6 explains how the proposed solution retrieves data used
for crash reporting and the difference between synchronous and asyn-
chronous data providers.

Section 4.7 lists all of the configuration options available in the
Crash Reporting Library, their respective default values and describes
how its API can be utilised to override the default configuration.

Section 4.8 defines the custom light-weight BinPacker File Format
that is used for crash reporting. The section also describes the capabil-
ities of the support tools handling the custom file format and how to
use them.

Section 4.9 explains how the Crash Reporting Library is integrated
within AVG’s existing infrastructure and how its API can be used
in order to process crash reports in multiple ways. The Section also
explains how the Crash Reporting Library can utilise different publish-
ing strategies and when the crash report is considered successful or
unsuccessful.

Section 4.10 describes how the Crash Reporting Library handles
offline states and unsuitable connection types. The Section also in-
troduces the Offline Publisher and explains its role within the Crash
Reporting Library.

2

1. Introduction

Section 4.11 describes the API that the Crash Reporting Library uses
for logging and how this API can be used to integrate the Crash Re-
porting Library logging with the host application.

Section 4.12 describes the testing and automation strategy for the
Crash Reporting Library and explains the process and environment of
the integration testing.

Section 4.13 describes the build configurations of the Crash Report-
ing Library and the support applications. The section also lists Gradle
tasks that can be used to produce one or more solution artefacts.

Section 4.14 defines the process of publishing and deployment the
developed library into a repository owned and maintained by AVG.

And finally, Chapter 5 provides a brief summary of the achieved
results, including author’s personal contribution. The Chapter also
lists the value provided to the industrial partner and highlights ac-
complishments.

3

2 The Problem Defined

This chapter defines the problem this thesis aims to solve and the
technical parameters and constraints of any viable solution.

2.1 The Nature of Failures on Android

Programming is a human activity that is rather prone to errors. Even
the best programmers in the world create faults which manifest them-
selves as failures throughout the different parts of the application life
cycle.

The most severe types of failure in any environment are unrecover-
able failures – simply called crashes. Probably the most common cause
of such crashes on Android is the infamous NullPointerException [1],
thrown each time a method is called on an uninitialised object variable.
Such error immediately leads to an application crash and displaying
of a dialog window (see Figure 2.1, left).

Starting with Android 6.0 (API level 23, codename Marshmallow),
the operating system even contains a crash log that stores a list of
crashed applications and the reasons for their respective crashes. When
any application experiences multiple crashes, Android displays a
slightly different dialog window (See Figure 2.1, right), which notifies
the user the application is problematic and restarting it will not resolve
the issue.

A completely different case is handling native code written in C or
C++ and using Android NDK (see Section 3.2). Not only do crashes
caused by native code not display any dialogs or other notifications
of any kind, but Android does not provide any solution for handling
native code crashes on its own.

2.2 Reporting Crashes

In order to detect and remedy a fault in the source code, a developer
needs either a precise list of instructions as to how to induce the given
failure or, provided that the failure manifests rather randomly, at least
a set of data which would enable a comprehensive analysis. Such data

5

2. The Problem Defined

Figure 2.1: Standard Android 7.1.2 Crash Dialogs.

include application logs, detailed information concerning both the
crashed application, its version and settings and detailed information
concerning the device, since Android is particularly infamous for its
fragmentation and vendor-specific quirks and bugs.

Android does provide its own crash reporting solution which, how-
ever, applies only to applications already published on the Google Play
application marketplace. On top of that, each crash report requires
an explicit user agreement via the click on a confirmation dialog win-
dow. This obviously limits the effectiveness of the solution and for
many non-consumer facing applications (such as industrial, internal
or technical demonstration applications, usually not published on
Google Play) is simply not suitable.

Moreover, these crash reports cannot be personalised or customised
in any way. This may prove unacceptable, as storing application data

6

2. The Problem Defined

on third party servers is unacceptable for many companies, including
AVG. Another problem, besides the obvious vendor-locking and re-
lying on a third party technology, is that Android’s default solution
is available only for Android applications. This would mean cumber-
some crash management for companies and organisations maintaining
a portfolio of applications available on multiple platforms.

This situation inevitably leads to the conclusion that any solution
for the aforementioned challenges needs to scale both horizontally and
vertically. Crashes encountered in different stages of the application
life cycle require separate handling. On the one hand, production
bugs need to be centrally analysed and categorised by their impact
and severity.

On the other hand, pre-production versions of an application might
require a different handling of the crash data and provide a quick and
steady solution for sharing of the crash data within the development
team.

This means that the best possible solution needs to be highly con-
figurable for the different stages of the application life cycle, would
not rely on any particular technology or back-end solution and respect
the fundamental limitations of mobile devices such as rather lower
computational power, battery power limitations and unstable network
connection.

This thesis aims to answer the following questions:

1. What crash reporting solutions are currently available? What
are their respective strengths and weaknesses? What potential
do they have for an integration with other technologies?

2. What are the options for replacing the default crash notification
dialog?

3. How can a modular architecture be utilised in order to achieve
maximal configurability and further extensibility?

4. Which data formats and communication protocols and adapters
are best suited for crash reporting of Android applications?

5. Which libraries, tools and APIs can be utilised for reporting
crashes of both managed and native code?

7

3 Technologies Used

This chapter describes all of the programming languages, libraries,
APIs, tools and other technologies used during the entire development
of the Crash Reporting Library.

3.1 Programming Languages

Since all Android applications are essentially run in a virtual machine,
all Android system APIs are provided for either Java or C/C++ native
calls.

Nowadays there are several programming options for the develop-
ment of Android applications such as Xamarin (C#) [2], Ruboto (Ruby)
[3], NativeScript (JavaScript/TypeScript) [4] or Kotlin1 [5]. However,
these either rely on being compatible with Java, heavily utilise An-
droid’s WebView [6] component for rendering web pages or utilise
cross-compilation to Java, Java bytecode and eventually Dalvik Exe-
cutable Format.

In order to eliminate the dependency on third-party components,
through an executive decision issued by the project supervisor, the
developed library uses Java, C and C++ only, since these languages
(along with Kotlin) are officially supported by the development kits
for Android.

Java Standard Edition. Java is a language originally developed by
Sun Microsystems and currently maintained by Oracle. Android’s
APIs were until recently based upon the open-source Apache Har-
mony [7] implementation. However, with the version 7.0 (API level 24,
codename Nougat), Android has switched to Oracle’s OpenJDK [8, 9]
implementation.

The original Harmony-based implementation supported the Java
SE API up to the version 6.0. In October 2013, Google added support
for the Java 7.0 language features using Build Tools version 19 or newer,
Android Studio version 0.3.2 or newer and Android Gradle Plug-in
version 0.6.1 or newer [10].

1. Kotlin is a JVM-compatible language actively developed by JetBrains.

9

3. Technologies Used

Most features such as the diamond operator, multi-catch and strings
in switches were available for all API levels, while try-with-resources
is available for Android version 4.4 (API level 19, codename KitKat)
or higher.

Android currently also supports a subset of the Java 8.0 features
and APIs, using the new Jack toolchain and Android Studio version 2.1
or newer. Some features like the lambda expressions, method referenc-
ing and type annotations are available at all API levels. Other features
such as default and static method implementations and repeatable
annotations are available from API level 24 onwards [11].

In March 2017, Google announced that the Jack toolchain is about
to be deprecated and the Java 8.0 language features are to be supported
directly by the javac and dx compilers, which are included in the
Android SDK [12] (see Section 3.2). The latest stable release of Android
Studio supports the Java 8.0 language features using the updated
compilers.

The Android Java APIs do not completely match standard Java
APIs, most notably replacing the awt package with its own GUI li-
braries located in packages android.view and android.widget and
removing the rmi package without a direct replacement. Conversely,
Android Java APIs contain several interesting extensions such as secu-
rity extensions and OpenGL API [13, p. 96-97].

Java is used as the main language of choice for the library, the
demonstration application, the test/demonstration server implemen-
tation and the support tools.

Python [14] is a popular open-source scripting language originally
developed by Guido van Rossum and first released in 1991. Python is
used in many environments ranging from configuration management,
server back-end development and testing automation.

Python currently has two major stable versions: 2.7.14 and 3.6.3.
While Python 3 was intended as a replacement for Python 2, due to
syntax incompatibility, many projects still utilise Python 2.7 because
of its extensive library support. Python 2.7 is used as the language of
choice in the component and integration test automation.

Bash (Bourne Again SHell) [15] is a scripting language that pri-
marily serves as the shell for Unix-like operating systems. Bash was
originally developed by Brian Fox for the GNU project as a replace-

10

3. Technologies Used

ment for the Bourne shell, first released in 1989. Bash upholds the
POSIX standard for OS shell and provides various extensions.

Bash is used in the automated build verification process, where it
runs the unit tests for build verification and as a language of choice
for Google Breakpad extension’s build script.

3.2 Tools

Android provides two standard APIs for application development,
the Android API for Java and Kotlin and the Android Native API for
C and/or C++.

Android SDK (Android Software Development Kit) [16] is a col-
lection of libraries, compilers, preprocessors and tools which allow
the development of applications for Android using the standard Java
Android APIs.

Android uses a different bytecode than Oracle-compatible VMs,
with compiled classes usually denoted by the .dex file extension. The
original (now called legacy) toolchain would compile Java source files
into Java bytecode classes and then transcompile them using the dx
tool.

The newer Jack toolchain produces .dex files directly. A comple-
mentary library tool called Jill (Jack Intermediate Library Linker) can
be used to transcompile standard Java libraries distributed in the .jar
format [11]. The new Java 8.0 compatible compiler uses the same
approach as the legacy compiler.

There are two virtual machines for Android: the original Dalvik
Virtual Machine and its replacement ART (Android Runtime). Dalvik
originally interpreted the bytecode however, Android version 2.2 (API
level 8, codename Froyo) introduced the JIT (Just-in-Time) compilation
for special cacheable parts of the code called traces [17].

ART was introduced as an experimental feature in Android 4.4
(API level 19, codename KitKat) and ultimately replaced Dalvik as the
default virtual machine in Android 5.0 (API level 21, codename Lol-
lipop). ART uses the AoT (Ahead of Time) compilation. The bytecode
gets compiled during the application installation, thus completely
eliminating Dalvik’s interpretation and JIT trace-based compilation.
This led to an optimisation during runtime, a better performance and

11

3. Technologies Used

a lower battery usage while prolonging the application installation
time for obvious reasons.

Android NDK (Android Native Development Kit) [18] contains
a gcc toolchain optimised for mobile processors, an implementation
of the C++ Standard Library and header files for accessing Android
native APIs.

TSD Debugger is a proprietary tool developed by AVG for launch-
ing, editing and debugging automated tests. TSD Debugger utilises
a client-server architecture which allows for launching automated tests
on both the development machine and remote virtual machines. TSD
Debugger is implemented in C#/Mono and is available for Windows
and macOS.

TSD Debugger utilises the special TSD (Test Definition) format as
a domain-specific language for tests, usually using the .tsd file exten-
sion. TSDs do not use one-time scripts like other testing approaches
do, but a list of reusable steps instead. The data format is based on the
JSON data format [19].

Final-CI is a proprietary continuous integration system developed
by AVG. Final-CI utilises Atlassian Bamboo [20] as its build server
and provides a web-based interface for running build plans, unit tests
(including JUnit tests for Java) and component/integration tests using
AVG’s proprietary TSD format (see above). Final-CI also supports var-
ious post-build triggers and hooks including automated deployment
and release management.

Final-CI is the solution of choice for automating the build process
and running automated build verifications.

3.3 Libraries

This section describes all of the libraries used in the development
process of the Crash Reporting Library.

Android Support Library [21] is a backport of features introduced
in newer versions of the Android SDK for the older ones. This allows
the usage of newly developed components and APIs even on older
devices. Android Support Library is used in the demonstration appli-
cation.

12

3. Technologies Used

JUnit [22] is one of the most popular frameworks for the develop-
ment, running and configuration management of unit tests written
in Java. The latest stable version is 4.12. A new overhauled version
5.0 targeted for and using new features of Java 8.0 was released in
September 2017 [22]. All unit tests of the Crash Reporting Library and
its support tools were written using JUnit 4.

Mockito [23] is an open-source testing framework for Java. An-
droid does support local unit tests2 using the android.jar library
included in the Android SDK. However, all of the classes contained in
the android.jar are mere stubs3.

In order to implement a locally run unit test, one does need to
provide a custom test implementation of all of the dependency classes
located in the Android SDK. This is usually achieved either through
inheritance of classes and interfaces or, preferably by using a mocking
library. Mockito is used in unit tests of the Crash Reporting Library.

PowerMock [25] is Java framework dedicated to solving common
testing problems, obstacles and pitfalls. PowerMock provides two
API extensions: one for Mockito (called PowerMockito) and one for
EasyMock.

PowerMock allows for mocking and testing implementation even
of final and static methods and classes by manipulating the code on
the VM/bytecode level and hence simulating otherwise unreachable
states required by unit testing. PowerMockito is used in unit tests of
the Crash Reporting Library.

Google Breakpad [26] is an open-source library developed by
Google used for handling native code crashes and generating memory
dumps. Google Breakpad is usable on several platforms including
Microsoft Windows, Linux, macOS and Android amongst others.

A successor library named Google Crashpad is currently under
development. However, Crashpad does not support Android at the
moment [27]. Google Breakpad is used in the native code crash report-
ing loop within the Crash Reporting Library.

Appium [28] is an open-source tool for test automation of native,
web-based and hybrid applications for iOS and Android platforms.

2. Meaning the tests are run on a development machine not on the actual handset,
tablet or other device with Android.
3. Blank implementations formally returning default values and throwing
RuntimeException [24] upon each call of any method from the archive.

13

3. Technologies Used

Appium itself is based on Selenium [29], a suite of tools for automating
web browsers.

Selenium and Appium utilise the client-server architecture using
REST API calls. While the server is implemented in NodeJS, Appium
provides multiple clients for various programming languages includ-
ing Java, Ruby, Python and C# amongst others.

The Crash Reporting Library uses the Python client. Appium is used
in the testing automation of the Crash Reporting Library.

Autolib is a proprietary library developed by AVG for testing au-
tomation of mobile applications. Autolib has two implementations –
the Python one and the PowerShell one.

The Crash Reporting Library uses the Python implementation in co-
operation with the Appium Python client. Autolib’s source code is not
disclosed in this thesis, in compliance with AVG’s specific instruction.

NanoHTTPD [30] is a light-weight, embeddable implementation
of a HTTP server written in and usable from Java. NanoHTTPD is used
as both the demonstration crash reporting server implementation and
in the testing automation.

14

4 Implementation

This chapter defines the process of implementation from the initial
analysis of existing solutions to the testing and automation process.

4.1 Analysis of Existing Solutions

This section describes several existing solutions for crash reporting of
Android applications and their respective strengths and shortcomings.
The analysis focused on the following features of the existing solutions:

• comprehensive and easy configurability,

• forms of user notification,

• further extensibility,

• support for various back-end solutions and

• support for native code crashes.

4.1.1 ACRA

Application Crash Reports for Android (ACRA) is an open-source
library developed by Kevin Gaudin, enabling Android applications
to automatically post their crash reports to a report server [31]. In
February 2016, ACRA was used in 2.68% of applications available on
Google Play. The latest version is 4.10.0, released in June 2017. ACRA’s
source code was released under the Apache License 2.0 license.

ACRA requires the android.permission.INTERNET permission
which is automatically granted on devices with Android 6.0 or newer
and granted upon installation on devices with older versions of An-
droid.

ACRA’s architecture utilises a handler service running in its own
process. This allows to terminate the crashing process and immediately
send the crash report to a server.

The service is meant to be started within the android.app.
Application#attachBaseContext(Context) method.

15

4. Implementation

There are two ways how one can initialise and pass configuration
to ACRA. The first one is by adding the @ReportCrashes annotation
located in the org.acra.annotation package to the Application class
and initialising ACRA via the org.acra.ACRA.init(Application)
method call. The other way uses a configuration builder class and ini-
tialises the library by calling the org.acra.ACRA.init(Application,
ConfigurationBuilder) method.

There are several back-end implementations for ACRA written in
various languages such as Java, Ruby and Go amongst others [32].
ACRA prescribes a standard behaviour to which a server must comply
and provides a referential implementation named Acralyzer [33].

On top of that, ACRA allows for custom publishing mechanisms
to support custom and third party servers (see Subsection 4.1.2).

ACRA does not support crash reporting for native code crashes. A
third party adapter called Acra-breakpad [34] exists, using a modified
version of ACRA [35]. However, Acra-breakpad seems outdated and
no longer actively developed as the last update was released on 15
March 2014.

ACRA can also suppress the default dialog window (see Figure 2.1).
ACRA supports four different modes for user notification whenever an
application crash is detected: DIALOG (displaying a customisable dialog
window, see Figure 4.1), NOTIFICATION (displaying a system notifica-
tion in the status bar), TOAST (displaying a Toast message [36]) and the
so-called SILENT mode, which does not display any user notification.

4.1.2 HockeyApp

HockeyApp is a crash reporting solution originally developed by
BitStadium. In December 2014, HockeyApp was acquired by Mi-
crosoft [37]. The source code for HockeyApp SDK was released under
the Apache License 2.0 license.

HockeyApp is partially compatible with ACRA in a sense that
the ACRA client can report to the HockeyApp server [38] using the
provided HockeySender classes.

Customisation is possible by inheriting and extending the
CrashManagerListener and UpdateManagerListener classes located
in the net.hockeyapp.android package.

16

4. Implementation

Figure 4.1: Example of ACRA’s Dialog Window.

HockeyApp has a preliminary (early access) support for the An-
droid NDK and crashes reported from the native code. HockeyApp
uses Google Breakpad for generating native code memory dumps (see
Sections 3.3 and 4.4).

HockeyApp uses its own proprietary server solution (see Figure
4.3). The client and server are synchronised using an API key stored
in the host application manifest.

HockeyApp replaces the default dialog window with its own (see
Figure 4.2). Instead of displaying the dialog and sending the crash
report immediately after the crash occurrence, the dialog is displayed
upon restarting the host application.

HockeyApp requires three system permissions. The android.
permission.ACCESS_NETWORK_STATE and the android.permission.
INTERNET are required for all devices, while the android.permission.
WRITE_EXTERNAL_STORAGE is required only for devices with API level
18 (version number 4.1 – 4.3.1, codename Jelly Bean) or lower.

4.1.3 Crashlytics

Crashlytics is a proprietary SDK originally developed by a company
of the same name. In January 2013, Twitter, Inc. acquired Crashlytics

17

4. Implementation

Figure 4.2: HockeyApp’s Dialog Window.

[39] and maintained its development tools until January 2017, when
it was acquired by Google who currently plan to merge Crashlytics
with their Firebase initiative [40].

Crashlytics supports Android crash reporting since May 2013 [41].
In May 2015, a support for native code crashes was announced. In
October 2014, Crashlytics became a part of Fabric – a larger portfolio of
mobile application analytic, user identity and authentication tools [40].

Crashlytics supports Android 2.2 (API level 8, codename Froyo)
or newer. The NDK crash reporting supports all NDK architec-
tures. Crashlytics requires a single system permission, the android.
permission.INTERNET.

Crashlytics supports Ant, Maven and Gradle build systems [42].
Gradle projects are required to use a specialised Gradle plug-in that
processes the Crashlytics settings.

Similarly to HockeyApp, Crashlytics uses a proprietary back-end
server solution accessible via an API key stored in the Android man-
ifest. The crash reports can be viewed using the Fabric Crashlytics
Dashboard (see Figure 4.4).

18

4. Implementation

Figure 4.3: Example of HockeyApp Server Crash Reports.

Crashlytics does not override the default crash dialog window (see
Figure 2.1).

Conclusion

All three of the aforementioned solutions lack the desired universality.
While ACRA provides the desired level of configurability and techno-
logical independence of any particular back-end solution, it does not
handle native code crashes. Conversely, HockeyApp and Crashlytics
do support native code crash reporting but lack the configurability
and require their respective proprietary servers. To change the default
behaviour would mean significantly modifying the source code which
cannot be done for Crashlytics since its source code is undisclosed.

HockeyApp’s crash reporting after an application restart is an
impractical solution for automated integration tests and maintaining

19

4. Implementation

Figure 4.4: Example of Fabric Crashlytics Dashboard.

multiple callbacks in a designated Activity seems cumbersome and
unwieldy.

Out of the three, the most viable concept to build upon and extend
is ACRA. Unlike the other solutions, it lacks the support for Android
NDK. However, ACRA’s basic architecture seems to be very effective,
robust and stable to extend.

ACRA, however, also prescribes its own communication protocol
between the client and the reporting server. This is not acceptable for
the proposed solution since AVG wanted to maintain full control over
the communication protocol (due to its existing crash reporting server
solution already utilised by AVG applications for Microsoft Windows
and macOS). Attempting to modify ACRA would therefore mean to
apply extensive changes to the source code. Moreover, since ACRA is
still actively developed, maintaining both independently developed
codebases would most likely be quite difficult, case in point being the
abandoned development of Acra-breakpad.

Both HockeyApp and Crashlytics rely on their respective third-
party servers. These servers are unsuitable for the proposed solution.
Both also utilise the Google Breakpad library, therefore it has been
chosen as a technology of choice for the native code crash reporting.

20

4. Implementation

Because of the aforementioned reasons, the solution proposed in
this thesis is a standalone library rather than a mere extension of any
of the existing solutions, in order to best suit the demands of AVG and
other parties who would choose to use the library.

The proposed solution is hereinafter referred to as the Crash Re-
porting Library.

4.2 Architecture Concept

Android API provides a way of developing multi-process applications
in a form of a service running in its own process. Such services need
to have their process name specified in the Android manifest using
the android:process XML attribute [43]. Private processes restricted
to the given application may be created by placing a leading colon
character in its process name (i.e. :service).

The crash detection has two entry points. Managed code crashes
are handled by CrashUncaughtExceptionHandler registered as the
default UncaughtExceptionHandler (described in more detail in Sub-
section 4.3). The other entry point is the Google Breakpad library.

The library operates in multiple processes, the processes of the
host application (usually just a single one) and the dedicated process
of the handler service (implemented in com.avg.zaap.crashlibrary.
CrashReportingService). The CrashReportingService serves as the
centrepiece for handling both managed code and native code crashes.

Upon a managed code crash, the library collects the process spe-
cific crash report data using the so-called synchronous providers (see
Section 4.6). Synchronous providers are called serially, one at a time.
Once the data collection has finished, the CrashReportingService is
bound and a new managed code crash is reported.

Native code crashes are managed by Google Breakpad which
creates a memory dump and consequently terminates the host pro-
cess whenever a native code crash is detected. A dedicated class
named FileObserver registered by the CrashReportingService au-
tomatically detects newly created files in the designated Google
Breakpad dump directory. Upon detecting a new file, it binds to the
CrashReportingService and reports a new native code crash. Native
code crash reporting is described in more detail in Section 4.4.

21

4. Implementation

Once a new (native or managed code) crash is reported, the
CrashReportingService notifies the CrashReporter class which han-
dles most of the application logic. The CrashReporter collects ad-
ditional data that is not necessarily related to the crashed host ap-
plications process. Unlike the synchronous providers, the asynchronous
providers are called in parallel and communicate asynchronously via
interface callbacks. Both synchronous and asynchronous providers are
described in more detail in Section 4.6.

The collected data (from synchronous providers, asynchronous
providers and/or Google Breakpad) is compiled into a single file using
a proprietary light-weight algorithm and data format. The compila-
tion is handled by the BinPacker class. The data format and related
tools are described in Section 4.8.

Finally, the crash report data file is processed using one or more
data publishers. The available publishing strategies as well as the default
publisher class is described in more detail in Section 4.9.

The crash report data publishing might also be postponed when
the device does not have a suitable Internet connection (meaning either
no connection or connection deemed unsuitable for crash reports).
The handling of the connection and offline states is described in more
detail in Section 4.10.

The Crash Reporting Library prescribes a single initialisation point
within a descendant of the Android android.App.Application class.
The library can be initialised within the attachBaseContext(Context)
method or within the onCreate() method by using either the
init(Context) or the init(Context, CrashLibConfig) method of
the com.avg.zaap.crashlibrary.CrashLib class.

Upon initialisation, the Crash Reporting Library loads its configu-
ration. There are two ways of passing configuration options to the
library, either by using the @CrashLibConfigAnnotations annotation
or the CrashLibConfig.Builder class. The configuration allows to
add custom extensions and modify the default behaviour of the Crash
Reporting Library. Configuration management is described in more
detail in Section 4.7.

The Crash Reporting Library requires three system permissions:
android.permission.ACCESS_NETWORK_STATE, android.permission.
INTERNET and android.permission.WRITE_EXTERNAL_STORAGE.

22

4. Implementation

4.3 Handling Managed Code Crashes

Unexpected behaviour of any program written in Java is handled
by throwing an instance of an object implementing the java.lang.
Throwable interface, commonly referred to as exceptions. Java SE API
distinguishes three kinds of exceptions – checked exceptions (inherit-
ing the java.lang.Exception class), runtime exceptions (inheriting
the java.lang.RuntimeException class) and errors (inheriting the
java.lang.Error class) [44].

Checked exceptions need to be explicitly handled by putting them
into a try-catch block or by declaring the exception as thrown by the
method, using the keyword throws in the method signature. In that
case, the method needs to be handled by the caller method in the same
way. The compliance to this rule is enforced by the syntax validator
during compilation.

Errors indicate serious problems with an application that a rea-
sonable application should not try to catch. Most of these errors are
abnormal conditions that should never occur [45] and might signalise
an issue within the virtual machine.

Java SE API defines a handler in the Thread.UncaughtException
class located in the java.lang package. A dedicated thread handler
can be assigned to each thread. In case an uncaught exception handler
is not explicitly assigned, a default one is used. The default handler
can be set using the Thread#setDefaultUncaughtExceptionHandler
method.

As it is common among other GUI-based application frameworks,
Android uses one dedicated thread for GUI operations, denoted in
the VM as main or commonly referred to as the UI thread. All other
threads are commonly called background threads.

When a background thread crashes, the thread gets terminated
by the uncaught exception. Java’s default implementation of
the UncaughtExceptionHandler class terminates the host process
and writes a stacktrace to the standard error output. However,
terminating the application is not a must. When the default
UncaughtExceptionHandler is replaced by a custom one, it is possible
to terminate only the crashing thread without any effects to any other
ones. The normal operation after the uncaughtException(Thread,

23

4. Implementation

Figure 4.5: Sequence Diagram: Handling Managed Code Crashes.

24

4. Implementation

Throwable) method call resumes and the application may continue
its run.

Conversely, when the UI thread crashes, it is completely unrecover-
able since the UI thread handling the GUI loop gets terminated. This
leads to completely unresponsive UI and ultimately forces the devel-
oper to terminate the entire process using the android.os.Process.
killProcess(int) method.

However, discarding a background thread silently might prove, in
fact, counter-productive since Android has very strict rules regarding
blocking the UI thread and therefore most time-consuming operations
are required to be handled asynchronously through background threads.

Discarding a background thread without notifying the appropriate
listeners, observers and other classes of similar semantics could possi-
bly break important application logic or require significant editing of
the application code (implementing fallback and time out mechanisms,
etc.).

Therefore, a common approach for both the main thread and back-
ground threads was chosen. The Crash Reporting Library terminates the
failing thread’s process regardless of whether the crash happened
within the main thread or any of the background threads.

The Crash Reporting Library implements a custom exception han-
dler in the CrashUncaughtExceptionHandler class within the com.avg.
zaap.crashlibrary.core package. The handler is set as the default
exception handler for all of the host application processes except the
CrashReportingService’s one. This avoids endless recursion in case
the CrashReportingService itself would crash.

Whenever a managed code crash is detected in the host application,
the CrashUncaughtExceptionHandler collects all the data from the
synchronous data providers (including the stacktrace writers, see Section
4.6) and required metadata (see Subsection 4.3.1).

After data collecting, the CrashUncaughtExceptionHandler binds
to the CrashReportingService that runs in its own dedicated process.

Android supports interprocess communication using the AIDL
(Android Interface Definition Language). AIDL allows to message
other processes running in the system and to pass data to them. Such
data can be either primitive data types or objects that implement either
the java.io.Serializable interface or the Android replacement for
Serializable, the android.os.Parcelable interface.

25

4. Implementation

The crash report data and metadata are stored in the com.avg.
zaap.crashlibrary.ReportData class that implements the android.
os.Parcelable interface. The class is mutable and serves further the
data structure for other processing classes, such as CrashReporter, the
asynchronous providers and publishers amongst others (see Sections 4.6,
4.9 and 4.10).

Finally, the host process gets terminated by calling the
android.os.Process.killProcess(int) method and the crash
report files are handled further by the CrashReportingService.

4.3.1 Collecting Metadata

Besides the crash report data collected by the configured synchronous
providers (see Section 4.6), the CrashUncaughtExceptionHandler also
collects metadata. The metadata can be divided into two distinctive
categories:

• internal metadata and

• identification metadata.
The internal metadata are collected in order to identify identical

crashes within the given device and to store human-readable name,
description and identifier of the crash. Internal metadata are also used
to keep track of crash report temporary files. Internal metadata are
not meant to be published by any of the configured publishers (see
Section 4.9) however, they might be shown to the user in the debug
build of the Crash Reporting Library.

The identification metadata are collected in order to enable iden-
tification and processing for crash reports on a crash reporting server.
Identification data are meant for the configured crash publishers in or-
der to help identify, group and categorise similar or identical crashes.

Both categories of metadata are stored within the com.avg.zaap.
crashlibrary.ReportData class. The ReportData class implements
the Parcelable interface in order to allow passing metadata between
application processes using the AIDL interface (see Section 4.2). Meta-
data are handled by the CrashReportingService.

Metadata of native code crashes are collected in a similar way
by the com.avg.zaap.crashlibrary.CrashReporter class (see Sub-
section 4.4.3).

26

4. Implementation

Internal Metadata

This subsection describes the internal metadata collected by the Crash
Reporting Library and stored within the ReportData class.

Crash Code is an internal unique identifier of the detected crash.
The value is calculated as a SHA-1 hash of the crashed thread’s stack-
trace using the generateHash(StackTraceElement[]) method of the
com.avg.zaap.crashlibrary.core.hash.HashGenerator class. The
Crash code value is used in order to determine the name of the com-
piled crash report file (see Sections 4.9 and 4.10).

Error Name stores the name of the uncaught exception. The value
is retrieved by getting the simple class name of the Throwable instance
using the java.lang.Class#getSimpleName() method.

Error Message stores the short error message provided by the
uncaught exception. The value is retrieved using the java.lang.
Throwable#getMessage() method. This value might be null as
it is not provided by all instances of Throwable (i.e. java.lang.
NullPointerException).

Error Details stores the detailed information about the crash. The
value is retrieved using the getErrorDetails(Throwable) method
of the CrashUncaughtExceptionHandlerHelper class located in the
com.avg.zaap.crashlibrary.core package.

Files to Pack stores all of the files produced by the configured
synchronous data providers that are to be compiled into the crash report
file. Since the ReportData class is mutable, the collection is modified
when the asynchronous providers are called to provide their respective
data (see Section 4.6).

Identification Metadata

While the Crash Reporting Library aims to support multiple crash re-
porting server solutions, the main goal is to integrate it within AVG’s
existing crash reporting infrastructure.

The proprietary AVG back-end solution requires a particular set of
data to analyse and process the crash. This subsection describes the
metadata collected for identification, classification and grouping of
crash reports.

27

4. Implementation

Exception Code stores the unique crash identifier in the form of
a 10 characters long hexadecimal string (i.e. 0xabcdef01). This value
is extracted from the first 8 characters of the Crash Code (see above)
and adding an 0x prefix.

Faulting Offset stores the source code line number of the
top element in the stacktrace. The value is retrieved using the
java.lang.StackTraceElement#getLineNumber() method.

Module Name stores the uncaught exception’s cause in the follow-
ing format: <file name> :<class name> :<method name> . In most
cases the file name (omitting the file extension) is identical to the
class name. However, since the cause of the crash might also be an am-
biguously named inner class, the file name is always used as a qualifier.
This data is collected using the getFileName(), getClassName() and
getMethodName() methods of the java.lang.StackTraceElement
class.

Module Version stores the application version set in the Crash
Reporting Library configuration (see Section 4.7).

Process Name stores the current process name. The value is
retrieved by calling the getProcessName(Context) method of the
ProcessHelper class located in the com.avg.zaap.crashlibrary.
core.helper.process package. This value is particularly useful in
multiprocess applications. The default value for a single-process ap-
plication is main.

Process Version stores the Crash Reporting Library version code
available through the com.avg.zaap.crashlibrary.BuildConfig.
VERSION_NAME static field automatically generated by Gradle (see Sec-
tion 4.13).

GUID stores a UUID identifier randomly generated by the
java.util.UUID.randomUUID() method. The UUID helps to identify
each occurrence of a particular crash type.

4.4 Handling Native Code Crashes

Java provides an API for calling native code and passing data between
native and managed code called JNI (Java Native Interface). Native
code methods are declared without an implementation (similarly to

28

4. Implementation

abstract or interface methods) and by using the native keyword
in the method signature.

JNI requires the implementation to be contained within a C source
file containing the JNI functions [46]. A developer can either write the
functions manually or have them generated by Android Studio 2.2.0
or newer [47].

Native code can also be attached to project files using
the shared libraries (commonly denoted by the .so file exten-
sion). Shared libraries can be loaded using either the java.lang.
System.loadLibrary(String) method or the java.lang.System.
load(String) method [48].

From a system perspective, the native code is treated in the same
way as the managed code. A case in point being that native code
still has to comply with the Android permissions system. Therefore,
native code can only write and modify files if the application has been
granted the appropriate permissions.

C++ has a very similar exception handling mechanism as Java.
However, uncaught exceptions are translated to signals which under
normal conditions lead to process termination. Native code written in
C uses only signals, since the C syntax does not support exceptions.

Native code crashes cannot be handled in Java due to the nature of
the JNI interface. When calling a native method, the control is given
to the native code assembly and the managed code run is resumed
once the native code successfully returns or ends.

The GNU C Library defines an API for handling signals in a ded-
icated header file named signal.h [49] which is also supported by
Android. A developer can configure a custom signal action handler
using the sigaction structure and sigaction(int, const struct
sigaction*, struct sigaction*) function specifying a pointer to
a function that gets called upon receiving a specified signal. Whilst
theoretically, the signal handler can remedy the cause of the crash (by
modifying the memory values causing the crash) and enabling the
program to continue. However, this most likely is not a viable option
for most real-world applications due to their complexity.

Since the native code cannot continue by processing the next ma-
chine code instruction, the process needs to be terminated. This limits
the options of processing crashes by the Crash Reporting Library to
low-level multi-process options. In UNIX-like systems these include

29

4. Implementation

Figure 4.6: Sequence Diagram: Handling Native Code Crashes.

30

4. Implementation

communication using a file, communication using the environment
variables and communication using process names. In the case of
crash reporting, the communication using a file is used, as it is the
most suitable for the designated purpose.

Instead of declaring a custom signal handler, the Crash Reporting
Library utilises the open-source Google Breakpad library (see Subsec-
tion 4.4.1).

The Crash Reporting Library targets the NDK Platform level 19 in or-
der to support even devices with Android 4.4 (API level 19, codename
KitKat) or lower [50].

4.4.1 Google Breakpad Integration

The source code of Google Breakpad is available for download at the
Google Open Source repository [51] or its GitHub clone.

The Android version of Google Breakpad requires Linux system
calls that are defined in the linux_syscall_support.h header file.
The file itself is not provided in the project repository however, the
Chromium project provides information about the header file, its
differences from the standard C library and the ways of possible inte-
gration [53].

Google Breakpad registers a custom signal handler for detecting
native code crashes. Upon detecting a crash, Google Breakpad creates
a memory minidump file in the specified directory. The minidump for-
mat is similar to core files and was originally created by Microsoft. The
format allows to traverse the dump and reconstruct a stacktrace of the
crashed process. Each crash file is named using the UUID pattern and
the .dump file extension. The contents of the file can be processed by
providing an exported list of symbols of used libraries and processing
both the list and the crash report by the Google Breakpad minidump
processor (see Figure 4.7).

Breakpad provides a simple API that handles the signal re-
ceiver and attaches a minidump generator to the created signal
handler. The library is initialised by calling a constructor of the
google_breakpad::ExceptionHandler class (see Source code 1).

31

4. Implementation

Figure 4.7: Google Breakpad Architecture.
[52]

Building Google Breakpad

Android NDK contains gcc toolchains specifically designed for com-
piling C/C++ source code for Android. NDK also allows to ex-
port a stand-alone version of the toolchain for selected architecture,
NDK platform and ABI (Application Binary Interface) using the
make-standalone-toolchain.sh included in the Android NDK (see
Source code 2).

The Crash Reporting Library supports three 32-bit ABIs: armeabi1

(compatible with ARM and ARM64 CPUs), armeabi-v7a (compatible
with ARM v7 and ARM64 CPUs) and x86 (compatible with 32-bit and

1. The armeabi ABI is now considered deprecated and support for it will be re-
moved in an upcoming release of the Android NDK.

32

4. Implementation

#include "client/linux/handler/exception_handler.h"
#include "android_breakpad.h"
using namespace google_breakpad;

void initializeBreakpad(const char* path) {
mMinidumpDescriptor = new MinidumpDescriptor(path);
mExceptionHandler = new ExceptionHandler(

*mMinidumpDescriptor, NULL, dumpCallback, NULL,
true, -1);

}

Source code 1: Initialising Google Breakpad.

$NDK/build/tools/make-standalone-toolchain.sh --arch=arm
--abis=armeabi --platform=android-19 --ndk-dir=$NDK
--install-dir=$HOME/toolchains/armeabi-platform19

Source code 2: Exporting a stand-alone toolchain for ARM ABI.

64-bit Intel CPUs). Google Breakpad for each supported platform can
be built using the respective exported stand-alone toolchain.

Google Breakpad client can be configured by using the configure
script and compiled using the make script (see Source code 3).
Google Breakpad client is distributed as static library named
libbreakpad_client.a. The Crash Reporting Library encapsulates the
static library into a shared library named libandroid_breakpad.so.

./configure --host=arm-linux-androideabi
--disable-processor --disable-tools

make -j4

Source code 3: Building Google Breakpad Client.

Since JNI requires a C-compatible API, the libandroid_breakpad
library provides a single function declared in the android_breakpad.h
header file. Google Breakpad client is initialised by calling the
initializeBreakpad(const char*) function.

33

4. Implementation

The function argument is a C-string specifying the file path of a
directory specified for creating the memory dumps. The build process
of all three Google Breakpad shared libraries has been automated
using the provided build.sh shell script.

4.4.2 Initialising the Native Code Handler

The Crash Reporting Library uses a so-called native module. Gradle nor-
mally compiles the native modules using the NDK toolchain and pro-
duces a shared library using the module name, prefix lib and .so
file extension (i.e. a native module named example produces shared
library named libexample.so).

The Crash Reporting Library overrides this process and defines two
custom Gradle tasks instead. The ndkBuild task calls the compiler
script (ndk-build.cmd on Windows or ndk-build on UNIX-like oper-
ating systems). The ndkClean task removes intermediate object files
located in the src/main/obj directory.

Using custom tasks allows the usage of a custom Android.mk make-
file instead of the default one generated by the NDK plug-in for Gradle.
The Android.mk file specifies the name of the output library, in the
case of the Crash Reporting Library, the module is named crash and
the generated output file is named libcrash.so and packaged within
the library’s .aar file.

During the static initialisation of the com.avg.zaap.crashlibrary.
CrashLib class, the native module shared library is loaded and
initialised by calling the initializeNativeLibrary(String) native
method.

Finally, the native code dump directory path is set during the
init(Context) or init(Context, CrashLibConfig) method call of
the com.avg.zaap.crashlibrary.CrashLib class.

4.4.3 Collecting Metadata

This subsection describes the difference between collecting meta-
data for managed code crashes (see subsection 4.3.1) and native code
crashes.

The memory dump output file path is observed by the com.avg.
zaap.crashlibrary.file.observer.FilePathObserver class. When-

34

4. Implementation

ever a new memory dump file is detected, the FilePathObserver
calls a callback method onNewFileCreated(String, String) of the
IFilePathObserverCallback interface located in the com.avg.zaap.
crashlibrary.file.observer package. The callback is handled by
the CrashReporter class.

The metadata are collected by the CrashReporter class similarly
as the UncaughtExceptionHandler does.

Internal Metadata

Error Name, Error Message and Error Details values are unused and
left empty.

Crash Code is equal to the GUID generated by Google Breakpad
(omitting the .dump file extension).

Files to Pack value contains only the Google Breakpad memory
dump file path, since Google Breakpad generates only one file.

Identification Metadata

Exception Code is derived from the GUID generated by Google
Breakpad and adding adding a 0x prefix (i.e. the Crash code for
9c95312e-bf5d-4547-8036-616e85124b9f.dump is 0x9c95312e).

Module Version, Process Version and GUID are collected the
same way as for the managed code crashes (see Subsection 4.3.1).

Faulting Offset, Module Name and Process Name values are set
to constants. Faulting offset is set to 0 and both Module Name and
Process Name are set to native, denoting a native code crash.

4.5 Notifying the User

One of the key requirements of the Crash Reporting Library is to re-
place the default Android crash dialog window (see Figure 2.1) with
a customisable solution.

The Crash Reporting Library allows setting one of five possible user
notification modes:

• ERROR_SCREEN – displays an Activity,

• DIALOG – displays a customisable dialog window,

35

4. Implementation

• NOTIFICATION – displays a system notification in the status bar,

• TOAST – displays a system Toast message,

• NONE – does not notify the user about crash.

The mode can be selected by setting the showError configuration
value (see Section 4.7). The configuration values are contained within
the com.avg.zaap.crashlibrary.config.EShowErrorType enumera-
tion.

ERROR_SCREEN

When the ERROR_SCREEN configuration value is set, whenever the
Crash Reporting Library detects a crash, it displays the com.avg.zaap.
crashlibrary.show.error.activity.ErrorActivity and puts it on
top of the navigation stack.

Since XML resources are merged between library and appli-
cation projects, the layout can be customised by overriding the
activity_error.xml layout file located in the src/res/layout di-
rectory.

While it is not enforced, the provided layout should contain the
following Views:

• a TextView with the crashlib_crashCode ID for displaying the
unique Crash Code,

• a TextView with the crashlib_exceptionCode ID for display-
ing the unique Exception Code,

• a TextView with the crashlib_errorMessage ID for displaying
the Error Message and

• a TextView with the crashlib_errorDetails ID for displaying
the Error Details.

Whenever any of these TextViews is not present in the provided
layout, the library logs an error and does not display the corresponding
error information or specified message.

36

4. Implementation

Figure 4.8: Example of Error Activity Stylised as the Windows 10 BSoD.

The ERROR_SCREEN configuration value behaves differently for
debug and release build configurations (see Section 4.13). The unique
crash code and the unique exception code are displayed only in the
debug configuration option as they are meant for internal releases,
release candidates, demonstration builds, testing builds and other
internal releases.

In the release build configuration, the error screen displays the
errorMessage and errorDetails configurations options (see Figure
4.8, right). The debug build configuration overrides those with the
uncaught exception message and the crashed thread stacktrace (see
Figure 4.8, left).

The layout of the Activity can be further enhanced by using cus-
tom Views that would embed application logic. This configuration
value is deemed to be the preferred notification mode for most usages

37

4. Implementation

and is set as the default value in the Crash Reporting Library configura-
tion management.

DIALOG

When the DIALOG configuration value is set, whenever the Crash Report-
ing Library detects a crash, it displays a customisable dialog window
informing a user about the crash.

Android does allow displaying a system-level alert dialog window
that overlaps other applications (including the launcher and other
previously launched applications). Such dialog requires the android.
permission.SYSTEM_ALERT_WINDOW permission. Usage of this permis-
sion is discouraged, as creating the system-level windows is meant to
be reserved for system-level interaction with the user.

Moreover, since the Android 6.0 (API level 23, codename Marsh-
mallow) permission overhaul, this permission is so-called extra pro-
tected which means the standard permission requesting dialog does
not pop up for SYSTEM_ALERT_WINDOW [54]. Therefore, the user has to
manually grant the permission to an application using the standard
Android Settings application. In conclusion, this solution is not viable
for applications targeting the API level 23 or higher for reliable crash
reporting and user notification.

Figure 4.9: Example of the Crash Reporting Library Dialog Window.

38

4. Implementation

Instead, the Crash Reporting Library simulates the system layer
dialog windows by displaying a transparent Activity (imple-
mented in the com.avg.zaap.crashlibrary.show.error.dialog.
DialogActivity class) with disabled incoming and outgoing anima-
tions. Upon tapping anywhere in the activity, the activity dismisses
the hosted dialog and itself.

The dialog window sets the errorMessage configuration option
as the dialog title and the errorDetails configuration option as the
dialog message. This configuration value is similar to ACRA’s DIALOG
reporting interaction mode.

NOTIFICATION

When the NOTIFICATION configuration value is set, whenever the Crash
Reporting Library detects a crash, it displays a customisable system
notification in the status bar (see Figure 4.10).

The notification sets the errorMessage configuration option as the
notification title and the errorDetails configuration option as the
notification message.

Figure 4.10: Example of the Crash Reporting Library Error Notification.

39

4. Implementation

Figure 4.11: Example of the Crash Reporting Library Toast Message.

Furthermore, the notification icon can be configured by using the
notificationSmallIcon configuration option. The default value is
android.R.drawable.ic_alert (see Figure 4.10).

This configuration value is similar to ACRA’s NOTIFICATION report-
ing interaction mode.

TOAST

When the TOAST configuration value is set, whenever the Crash Re-
porting Library detects a crash, it displays a Toast system message
(see 4.11). The errorDetails configuration option is set as the Toast
message text. The Toast is displayed for the android.widget.Toast.
LENGTH_SHORT interval (2 seconds on standard devices).

This configuration value is similar to ACRA’s TOAST reporting in-
teraction mode.

NONE

When the NONE configuration value is set, whenever the Crash Reporting
Library detects a crash, the user does not get notified in any way. This
mode is predominantly meant for test builds, automation and unstable
release candidates. Not notifying the user does not prevent the crash
data from being collected and published (see Section 4.9).

This configuration value is equivalent to ACRA’S SILENT reporting
interaction mode.

40

4. Implementation

4.6 Providing Crash Data

As it was already established in Section 4.3, crashes mandatorily lead
to process termination. As such, an effective data provision needs to
be divided into two groups:

• data related to the current process and

• data which can be collected after the process termination.

The former group includes all of the data related to the mem-
ory allocated by the crashing process. Such data needs to be
collected before the actual process termination – most notably
the data describing a memory state, such as the stacktrace or
the heap memory dump. The Crash Reporting Library calls the
providers of such data synchronous providers as they actively block
the CrashUncaughtExceptionHandler’s thread until all of requested
data is collected. All synchronous providers implement the com.avg.
zaap.crashlibrary.provider.ICrashSyncProvider interface.

The latter group contains data of either constant or persistent na-
ture. This includes identifiers necessary for reproducing the crash,
such as application build version, hardware ID, manufacturer and
also persistently stored data such as database journals, logs and
possibly other useful application diagnostic data. The Crash Re-
porting Library calls these data providers asynchronous providers. All
asynchronous providers implement the com.avg.zaap.crashlibrary.
provider.ICrashAsyncProvider interface.

Each provider defines a file name where it stores its result data. This
value is mandatory and each provider is expected to store all of the col-
lected information in the specified file for the data to be reported. The
Crash Reporting Library stores these files in a directory named crash
in the application internal storage space (/data/data/<application
package> /crash/ on standard devices). The provider files are meant
to be temporary and are overwritten each time a new crash report is
detected. The Crash Reporting Library does not restrict collision and is
up to the application developer to provide non-colliding names. The
provider files are further compiled into a single file during the crash
report processing (see Section 4.8).

41

4. Implementation

All synchronous providers implement the provideData(String)
method returning full file path of the output file. Alterna-
tively, asynchronous providers implement the provideData(String,
ICrashProviderCallback) method. This method is asynchronous
and provides the result file path via the com.avg.zaap.crashlibrary.
provider.ICrashProviderCallback callback interface.

An application developer may define custom providers – both
synchronous and asynchronous. Synchronous providers can be easily used
to cover helpful non-persistent data (such as state of singleton classes
and caches) and asynchronous providers can be used for reporting state
and metadata of persistently stored information (i.e. logs, database
data, images and tokens amongst others). Custom providers can be
added using the Crash Reporting Library configuration management
(see Section 4.7).

4.6.1 Default Synchronous Providers

This subsection defines the synchronous providers that are available
within the Crash Reporting Library by default. All of these synchronous
providers are enabled in the default configuration. If needed, these
providers can be manually disabled in the configuration management
(see Section 4.7).

Memory Heap Provider

The Memory Heap provider is a synchronous data provider generat-
ing the heap memory dump and implemented in the com.avg.zaap.
crashlibrary.provider.memory.MemoryHeapProvider class.

The provider calls the android.os.Debug.dumpHprofData(String)
method which is always executed on the UI thread. The memory dump
generation can take quite some time since time to collect the HPROF
data depends on the heap size set by the device manufacturer. There-
fore, it is recommended to use the provider in development builds
and internal releases and not in production.

Java uses the HPROF data format (usually denoted by the .hprof
file extension) for its heap memory dumps. Since the Dalvik Executable
format is not compatible with the standard Java bytecode, the memory
dumps generated by Dalvik are not compatible with standard tools.

42

4. Implementation

In order to access the memory dump data, the memory dump has
to be converted first by the hprof-conv tool to the standard HPROF
format. Then the memory dump can be processed using standard
tools such as Eclipse MAT (Memory Analysis Tool, see Figure 4.12)
or Oracle’s jhat which is a part of the standard JDK. Android Studio
can open and process the Dalvik HPROF files on its own using the
aforementioned SDK tools.

The Memory Heap Provider stores its data in the dump.dalvik.
hprof output file.

Figure 4.12: Sample Memory Heap Dump Processed in Eclipse MAT.

Crashing Stacktrace Writer and All Stacktrace Writer

There is a special class that, to be precise, is not a synchronous
provider (since it does not implement the ICrashSyncProvider in-
terface). The class is named StackTraceWriter and is located in
the com.avg.zaap.crashlibrary.provider.stacktrace package. In-
stead of the provide() method defined in the ICrashSyncProvider
interface, StackTraceWriter defines two special methods.

The first one is the writeCrashingThreadStackTrace(String,
Throwable) method, used to serialise the crashing thread’s stack-
trace into a file. The output file name for such collected stacktrace
is StackTraceCrashingThread.txt.

43

4. Implementation

Figure 4.13: Class Diagram: Synchronous Providers.

The second one is the writeAllStackTraces(String) method, se-
rialising stacktraces of all threads of the crashed process. The output
file name for collected stacktraces is StackTracesAllThreads.txt.

The aforementioned methods are treated in the same way as the
synchronous providers, meaning they are enabled by default and can
be disabled in the Crash Reporting Library configuration management
(see Section 4.7).

4.6.2 Default Asynchronous Providers

This subsection defines the asynchronous providers that are available
within the Crash Reporting Library by default. All of these asynchronous
providers are not enabled in the default configuration, one has to add
them manually via the configuration management (see Section 4.7).

Device Info Provider

The Device Info Provider collects the data available in the android.os.
Build class such as device brand, manufacturer, model, serial number
and ABIs supported by the device’s CPU amongst others. This data
is meant to provide additional information in order to pinpoint any
problems regarding a customised Android build, a particular vendor
or a device.

44

4. Implementation

Figure 4.14: Class Diagram: Asynchronous Providers.

The output of the provider is stored in a key-value formatted
text file, using colon as a separator (see Source code 4). The Device
Info Provider is implemented in the com.avg.zaap.crashlibrary.
provider.device.DeviceInfoProvider class and uses DeviceInfo.
txt file name to temporarily store the collected data.

Crash Library Info Provider

The Crash Library Info Provider retrieves the Crash Reporting Library
build configuration data. The application logic is delegated to the
BuildConfigProvider class (see below).

The output of the provider is stored in a key-value formatted text
file, using colon as a separator (see Source code 5). The Crash Library
Info Provider is implemented in the com.avg.zaap.crashlibrary.
provider.app.CrashLibInfoProvider class and uses CrashLibInfo.
txt file name to temporarily store the collected data.

The BuildConfig Provider

Gradle plug-in for Android automatically creates a class named
BuildConfig in the application (or library) package. This class is de-

45

4. Implementation

Board: sailfish
Bootloader: 8996-012001-1709121620
Brand: google
Device: sailfish
Display: OPR3.170623.013
HW: sailfish
Host: vpef8.mtv.corp.google.com
ID: OPR3.170623.013
Manufacturer: Google
Model: Pixel
Product: sailfish
Serial: FA6AS0301099
SDK: 26
Tags: release-keys
Type: user
User: android-build
ABIs: arm64-v8a, armeabi-v7a, armeabi

Source code 4: Sample Device Info Generated for Google Pixel.

clared as public final and contains public static constants only.
Gradle automatically adds mandatory fields from the build.gradle
configuration file (such as package name, version name, version code,
etc.) as these constants. A developer may also add additional constants
into the BuildConfig class by using the buildConfigField(String,
String, String) method specifying the constant type, name and
value.

While there is no actual BuildConfig Info provider, one can write
a custom asynchronous provider class inheriting the abstract com.
avg.zaap.crashlibrary.provider.app.BuildConfigProvider class
in order to collect the BuildConfig data.

The constructor BuildConfigProvider(String, Class) takes
two formal arguments: the file name (including file extension) into
which is the data temporarily stored and the class holding the Build-
Config data. The provider automatically extracts all accessible constants
from the provided class.

46

4. Implementation

APPLICATION_ID : com.avg.zaap.crashlibrary
BUILD_TYPE : debug
DEBUG : true
FLAVOR :
VERSION_CODE : 3
VERSION_NAME : 0.0.3

Source code 5: Sample Crash Library Info for Version 0.0.3.

The data is stored in the same format as the Crash Library Info
Provider data (see Source code 5). In fact, the Crash Library Info
Provider is implemented using the BuildConfigProvider.

4.7 Configuration Management

This sections defines the configuration options of the Crash Reporting
Library, the means of passing a configuration to the library and default
configuration options.

The Crash Reporting Library’s configuration management is heavily
influenced by ACRA, providing a very similar interface for setting its
configuration options. The Crash Reporting Library stores its configu-
ration in an immutable class named CrashLibConfig located in the
com.avg.zaap.crashlibrary.config package. There are two ways of
creating a CrashLibConfig instance:

• using the CrashLibConfig.Builder builder class or

• by parsing the @CrashLibConfigAnnotations annotation.

The CrashLibConfig.Builder is a mutable class implementing
the builder design pattern. The configuration options can be set by
calling their respective setter methods. Each setter method returns
the instance of the CrashLibConfig.Builder class, making it suitable
for method chaining (see Source code 6). Finally, the CrashLibConfig
instance can be retrieved by calling the build() method.

When using the builder class, the Crash Reporting Library needs
to be initialised using CrashLib.init(Context, CrashLibConfig))
method at the beginning of the application life cycle (in

47

4. Implementation

import android.app.Application;
import com.avg.zaap.crashlibrary.CrashLib;
import com.avg.zaap.crashlibrary.config.EShowErrorType;

public class CrashApplication extends Application {
@Override
public void onCreate() {

super.onCreate();
CrashLibConfig config = new CrashLibConfig.Builder()

.showErrorType(EShowErrorType.ERROR_SCREEN)

.errorMessage("Sample error message")

.errorDetails("Sample error details")

.disableMemoryHeapProvider()

.disableStackTraceCrashingThread()

.disableStackTraceAllThreads()

.maxAttempts(10)

.delay(60 * 1000)

.build();
}
CrashLib.init(this, config);

}

Source code 6: Initialising the Crash Reporting Library Via the Builder.

the body of either Application#onAttachBaseContext() or
Application#onCreate()).

Alternatively, an application developer can use the
@CrashLibConfigAnnotations annotation located in the
com.avg.zaap.crashlibrary.config package.

Each configuration option can be set by assigning its respective
annotation element (see Source code 7). Both Source code 6 and Source
code 7 produce the same configuration.

The unspecified values are supplanted by the default configuration
(see below). Unless specified otherwise (see Subsection 4.7.3), each
configuration option can be set via the annotation element or via a
setter method of the same name.

48

4. Implementation

For example, the applicationVersion option can be
configured by either using the applicationVersion =
<value> annotation element or by calling CrashLibConfig.
Builder#applicationVersion(String). However, the number
of formal arguments and their types may differ.

import android.app.Application;
import com.avg.zaap.crashlibrary.config.

CrashLibConfigAnnotations;
import com.avg.zaap.crashlibrary.config.EShowErrorType;

@CrashLibConfigAnnotations(
showErrorType = EShowErrorType.ERROR_SCREEN,
errorMessage = "Sample error message",
errorDetails = "Sample error details",
disableMemoryHeapProvider = true,
disableStackTraceCrashingThread = true,
disableStackTraceAllThreads = true,
maxAttempts = 10,
delay = 60 * 1000

)
public class CrashApplication extends Application {

@Override
public void onCreate() {

super.onCreate();
CrashLib.init(this);

}
}

Source code 7: Initialising the Crash Reporting Library Via Annotation.

4.7.1 Application Identification Options

The Crash Reporting Library defines two options for identifying host
applications: applicationVersion and capProductID.

The applicationVersion defines the host application version,
most commonly either the build number or the release version using

49

4. Implementation

the semantic versioning pattern [55]. The host application may specify
any valid string as its applicationVersion. The default value is set to
"unknown".

The capProductID (CAP stands for Crash Analysis Portal) config-
uration option specifies the host application product ID. The host
application may specify any valid string as its capProductID. The
default value is set to "ANDR".

4.7.2 User Notification Options

The Crash Reporting Library defines four options for configuring
and customising user notification (see Section 4.5): showErrorType,
errorMessage, errorDetails and notificationSmallIcon.

The showErrorType specifies the form of user notification. The
configuration value must be on of the com.avg.zaap.crashlibrary.
config.EShowErrorType enumeration values. The impact on the user
is described in more detail in Section 4.5. The default value is set to
EShowErrorType.ERROR_SCREEN.

The errorMessage allows user to specify a a custom message
that is displayed to used when the showErrorType is set to one of
ERROR_SCREEN, DIALOG, TOAST or NOTIFICATION. The default value is
set to "errorMessage is not configured".

The errorMessage allows user to specify a a custom message
that is displayed to used when the showErrorType is set to one of
ERROR_SCREEN, DIALOG, or NOTIFICATION. The default value is set to
"errorDetails is not configured".

The debug build of the Crash Reporting Library overrides
both errorMessage and errorDetails when the ERROR_SCREEN
showErrorType is set (see Section 4.5 and Figure 4.8, left).

The notificationSmallIcon specifies a custom small notifica-
tion when using the NOTFICATION showErrorType. The specified re-
source int needs to point to a drawable resource upholding the
notification icon standards and requirements [56]. This value is ig-
nored for other showErrorType values. The default value is set to
android.R.drawable.ic_dialog_alert.

50

4. Implementation

4.7.3 Provider Options

The Crash Reporting Library defines five options for configuring syn-
chronous and asynchronous providers: syncProviders, asyncProviders,
disableMemoryHeapProvider, disableStacktraceCrashingThread
and disableStackTraceAllThreads.

The syncProviders configuration option allows a developer to
add additional synchronous providers. The formal argument for the
annotation element is of a Class<? extends ICrashSyncProvider>[]
type, whereas the setter method takes List<ICrashSyncProvider> as
the formal argument. The default value is an empty List.

The asyncProviders configuration option allows a developer to
add additional asynchronous providers. The formal argument for the an-
notation element is of a Class<? extends ICrashAsyncProvider>[]
type, whereas the setter method takes List<ICrashAsyncProvider>
as the formal argument. The default value is an empty List.

The disableMemoryHeapProvider allows a developer to disable the
default MemoryHeapProvider (see Subsection 4.6.1). When set to true,
the MemoryHeapProvider is disabled and does not collect memory data.
The default value of this configuration option is false.

The disableStacktraceCrashingThread allows a developer to dis-
able the default stacktrace writer for the crashing thread (see Subsec-
tion 4.6.1). When set to true, the writer for the crashing thread is
disabled and does not collect stacktrace data. The default value of this
configuration option is false.

The disableStackTraceCrashingThread allows a developer to dis-
able the default stacktrace writer for all threads (see Subsection 4.6.1).
When set to true, the writer for all threads is disabled and does not
collect stacktrace data. The default value of this configuration option
is false.

The setter methods for disabling the default providers do not take
any formal arguments. Since default providers can only be disabled,
any arguments would be excessive.

4.7.4 Data Publishing Options

The Crash Reporting Library defines seven configuration options related
to the crash report publishing: crashReportURL, crashUploadURL,

51

4. Implementation

crashPublishers, disableCapPublisher, strategy, maxAttempts
and finally delay (see Section 4.9).

The crashReportURL and crashUploadURL configuration options
specify the endpoint URLs used in the default two-step protocol (see
Section 4.9). The default publisher uses both of these URLs. A custom
publisher may use one or both of these values. The default value of
both configuration options is set to an empty string.

The crashPublishers configuration option allows user to add ad-
ditional publishers. The formal argument for the annotation element is
of a Class<? extends ICrashPublisher>[] type, whereas the setter
method takes List<ICrashPublisher> as the formal argument. The
default value is an empty List.

The strategy configuration option specifies the publishing strat-
egy for publishing crash reports (see Subsection 4.9.3). The default
value is set to Strategy.BEST_EFFORT.

The disableCapPublisher allows a developer to disable the de-
fault publisher used by the Crash Reporting Library. When set to true,
the default publisher is disabled. The default value of this configu-
ration option is false. The setter method for disabling the default
publisher does not take any formal arguments.

The maxAttempts specifies the maximal amount of attempts to
publish any single crash report. The default value is set to 3.

The delay configuration option specifies a minimal delay between
publishing attempts in milliseconds. The default value is set to 3600000
(1 hour in milliseconds).

4.7.5 Connection Options

The Crash Reporting Library defines three configuration options related
to suitable connection settings (see Section 4.10): offlineSuitable,
connectionLevelSuitable and roamingSuitable.

The offlineSuitable configuration options specifies whether a
working Internet connection is necessary for crash reporting. When set
to true, the application developer has to disable the default publisher
by setting the disableCapPublisher configuration option to true and
add custom publishers that do not require an Internet connection. The
default value is set to false.

52

4. Implementation

The connectionLevelSuitable configuration options specifies the
minimal level of connection to be considered for crash reporting (see
Section 4.10). The default value is set to Connection.WIFI.

The roamingSuitable configuration options specifies whether
roaming data connections are considered as suitable for crash report-
ing. When set to true, the Crash Reporting Library reports crashes even
when the device uses a roaming connection. The default value is set
to false.

4.7.6 Logging Options

The Crash Reporting Library defines a single configuration option for
application logging named logger.

The logger configuration option allows an application developer
to replace the default logger instance (see Section 4.11) with a custom
logger. The default value is set to an instance of the com.avg.zaap.
crashlibrary.core.logger.DefaultLogger class.

4.8 Packaging of collected data

This section defines the proprietary data format used within the Crash
Reporting Library and support tools that can be used for reading and
extracted the crash report data.

As it was established in Section 4.6, each provider creates its own
temporary file containing its data. This approach allows to easily con-
figure default providers within the Crash Reporting Library and virtually
effortless implementation of custom application-related providers.

However, handling multiple files tends to be tedious, especially
when they are to be transferred over a network. Network communi-
cation of mobile devices cannot be perceived as reliable due to their
mobile nature. Therefore, transactional handling of crash reports is
a must. Handling multiple files within a transaction either leads to
multiple requests which are harder to process transactionally.

4.8.1 The BinPacker File Format

During the initial prototype development of the Crash Reporting Li-
brary, the idea was to use a commonly used compression algorithm for

53

4. Implementation

compiling provider files into a single one, in order to save the effort of
developing custom file format and support tools. The initial prototype
used the ZIP algorithm since Java already provides a standard API
for handling standard ZIP and GZIP file formats within the standard
Java API [57].

However, as it had turned out during the empiric observation, the
implementation is too computationally demanding for mobile devices.
This issue naturally affects older single-CPU devices the most. On
older devices even when using the STORE compression level2, compil-
ing the collected data may take up to several minutes.

Since the main goal of the Crash Reporting Library is to reach max-
imal possible universality, even these older devices are meant to be
supported. The Crash Reporting Library therefore uses a proprietary
light-weight file format named BinPacker File Format.

Figure 4.15: Visualisation of the BinPacker File Format.

The BinPacker File Format does not provide file compression and
stores only the minimal amount of metadata. Unlike ZIP or GZIP, the
BinPacker File Format does not support hierarchical directory structure.
However, a root directory can be specified by using a directory header
(see below). A BinPacker File Format file can be identified by the .bp

2. Meaning the ZIP archive is not compressed and actually takes more disk space
than the sum of the original files.

54

4. Implementation

file extension. Files compiled into a BinPacker File Format file are from
hereinafter referred to as binpacked.

Each BinPacker File Format archive consists of two parts – the archive
header and the archive content. The archive header is a null-terminated
UTF-8 string (similar to strings in the C programming language). If
the archive header is equal to the archive file name, the archive does
not define a root directory. Otherwise the archive header specifies
a root directory that is created upon the archive extraction.

The archive content consists of one or more file records. A record
contained within a BinPacker archive has exactly three parts:

1. file name – a null-terminated UTF-8 string3,

2. a 32-bit unsigned integer – specifying the file size in bytes4

and

3. file content – the actual file content (binary).

Figure 4.15 visualises a sample BinPacker File Format archive named
sample.bp which contains two files: file.ext (9 bytes) and file2.ext
(12 bytes).

4.8.2 BinPacker API

The API for both compiling and extracting BinPacker File Format
archives is defined in two interfaces: IBinPacker and IBinUnPacker
located in the com.avg.zaap.crashlibrary.publish.packer pack-
age. The actual implementations are the BinPacker and BinUnPacker
classes located in the aforementioned package.

The BinPacker API is meant for Android only since it uses Android
Support Annotations. Conversely, the BinUnPacker API can be used
as a part of an Android project or as a standalone executable version
usable with standard Java Runtime Environment (see Subsection 4.8.3).

3. Usage of non-English characters is supported, however, discouraged due to
their larger size and possible incompatibilities among various file systems. All of
the default synchronous and asynchronous providers use ASCII file names only.
4. Therefore the maximal theoretical file size of a single file within the archive is
about 4 GB.

55

4. Implementation

4.8.3 Support Tools

A BinPacker File Format archive can be processed using one the two
available tools: the Windows batch file and or the GUI application
written in Java. Both of these tools use the BinUnPacker Java API and
therefore require Java Runtime Environment installed on the host
machine.

The BinPacker batch tool allows to compile a standalone version
of the BinPacker API from sources and use the compiled version. The
host machine must have both Java Development Kit installed and its
PATH environment variable needs to contain its bin directory. The tool
allows to list the archive content and extract the binpacked files into a
specific location (see Source code 8).

C:\>binUnPacker.bat --extract src
9e8d69430146d31fad042a41ffd554add8d75290.bp
C:\extracted\

Source code 8: Extracting a file using the BinUnPacker Batch Tool.

Figure 4.16: The BinUnPacker Batch Tool.

The BinUnPackerUI is a GUI tool implemented in Java using the
Swing UI library. The tool allows to set the source archive and the

56

4. Implementation

destination path using standard file dialogs and to set the default
extraction directory. The BinPackerUI tool also allows to specify auto-
matic overwrite and/or safe extract strategy (see Figure 4.17).

The BinPackerUI tool is distributed as an executable .jar archive.

Figure 4.17: The BinUnPackerUI GUI Tool.

4.9 Data Publishing

This section describes the process of publishing crash reports and
default publishers available within the Crash Reporting Library.

Once the crash report is compiled into a single BinPacker file,
assuming there is a suitable Internet connection (see Section 4.10), the
Crash Reporting Library attempts to publish the crash report using the
configured publishers and publishing strategy (see Subsection 4.9.3).

A publisher is any class implementing the com.avg.zaap.
crashlibrary.publish.ICrashPublisher interface. The interface
defines a single method named publish(Context, ReportData,
String, ICrashPublisherCallback). The publishers communicate

57

4. Implementation

asynchronously using the ICrashPublisherCallback callback inter-
face.

The Crash Reporting Library library contains two publishers: the CAP
Crash Publisher and the External Storage Publisher. An application
developer may add additional publishers using the configuration man-
agement (see Subsection 4.7.4).

4.9.1 CAP Crash Publisher

The CAP Crash Publisher is the default publisher for the Crash Reporting
Library. The publisher defines a two-step protocol compatible with the
crash reporting infrastructure used by AVG. This publisher uses the two
HTTP endpoints defined in the Crash Reporting Library configuration:
crashReportURL and crashUploadURL (see Subsection 4.7.4).

The CAP Crash Publisher first sends just the metadata about the
crash report. According to the received response, either the full crash
report is uploaded on the server or the publisher returns success,
marking the file as successfully published.

The crash report request is a HTTP POST multipart/form-data with
following header containing the identification metadata (see Subsec-
tion 4.3.1):

• EXC – Exception Code,

• FSO – Faulting Offset,

• MDN – Module Name,

• MDV – Module Version,

• PFN – Process Name,

• PFV – Process Version and

• BCK – Crash Code.

The report request contains following string body parts:

• guid – randomly generated GUID,

• prd – Product ID,

58

4. Implementation

• prv – Application Version and

• protver – Product ID (CAP Crash Publisher uses protocol ver-
sion 2).

The response of the report request is a text/plain that con-
tains one of the following result states (defined in the com.avg.zaap.
crashlibrary.publish.cap.http.CapResponseCode class).

-1 ERROR
Signalises either communication breakdown or server error.

0 NO_DUMP
No more crash reports of given type are needed, CAP has al-
ready collected sufficient amount of samples.

1 MINI_DUMP
Minidump upload requested.

2 FULL_DUMP
Full dump upload requested.

6 KEEP_DUMPS
No more crash reports of given type needed, the client is ad-
vised to keep recorded dumps for further investigation.

8 DIRECT_CFG
Forces to reload the configuration of the crash reporter (not
implemented).

The CAP Crash Publisher treats both -1 ERROR and connection
error (time-out or failure to resolve the endpoint address) as a failure.
The 0 NO_DUMP response is treated as a success and the BinPacker
archive is not uploaded. All other responses lead to the BinPacker file
upload using the upload request.

The upload request is a HTTP POST multipart/form-data with
following string body parts:

• guid – randomly generated GUID and

• prd – Product ID.

59

4. Implementation

The crash reporting server pairs the report request and upload
request using the Product ID and randomly generated GUID. Both of
these values are the same for both requests. The Crash Reporting Library
solution also contains a mock implementation of the CAP server for
integration testing purposes (see Section 4.12).

The CAP Publisher is enabled by default and can be disabled using
the configuration management (see Subsection 4.7.4).

4.9.2 External Storage Publisher

The External Storage Publisher is a publisher that copies the Bin-
Packer archive to the external storage. The provider is implemented
in the ExternalStorageCrashPublisher located in the com.avg.zaap.
crashlibrary.publish.externalstorage package.

Unlike internal storage space that restrict access to
their respective applications, the Android external storage
may be used by all applications that are granted either
android.permission.READ_EXTERNAL_STORAGE (for read access)
or android.permission_WRITE_EXTERNAL_STORAGE (for read/write
access) and is even accessible to the user. Historically, the external
storage was implemented using an SD card that was mounted upon
inserting into the device. Although many contemporary handsets
no longer use SD cards, they emulate the external storage state API
and provide a symbolic link /sdcard/ that points to the emulated
external storage.

The Crash Reporting Library stores its data in the dedicated di-
rectory for the host application (/sdcard/Android/data/<package
name> /files/ on standard devices). The External Storage Directory
does not require a working Internet connection and returns failure only
when the file cannot be written (i.e. when the SD card is unmounted
or when it does not have enough free space left). The provider is not
enabled by default but can be added using the configuration manage-
ment (see Subsection 4.7.4).

4.9.3 Publishing Strategies

Since the Crash Reporting Library supports usage of multiple publishers,
the question arises as to how to handle potential publishing failures.

60

4. Implementation

Since publishers are independent from each other, one publisher may
return success, while other one reports its result as a failure.

Therefore, the Crash Reporting Library provides three possible pub-
lishing strategies:

• ALL,

• ANY and

• BEST_EFFORT.

Publishing strategies are defined as constants in the com.avg.zaap.
crashlibrary.offline.Strategy enumeration.

The ALL configuration treats a publishing attempt as a success
whenever all configured publishers return success as their result. This
configuration is primarily intended for production builds and other
builds where consistency is valued over reporting every single crash
report.

The ANY configuration treats a publishing attempt as a suc-
cess whenever at least one publisher returns success as its re-
sult. For example, when using both CapCrashPublisher and
ExternalStoragePublisher, a situation when the network is unavail-
able but the crash report is successfully stored in the external storage
directory is treated as a success.

The BEST_EFFORT strategy treats every publishing attempt as a
success no matter what the results of the configured publishers are.
This configuration is primarily intended for controlled environments
(such as QA automation or internal releases) where application bugs
can be easily reproduced.

When the Crash Reporting Library is configured to use just a single
publisher, the ALL and ANY publishing strategies behave identically.
Once a crash report file is successfully published, the BinPacker archive
is permanently deleted.

4.10 Connection Handling

This subsection describes the way the Crash Reporting Library handles
different means of Internet connection or the lack of it.

61

4. Implementation

Mobile devices running Android often have to face unstable con-
nection due to nature of their network access. Even when a network
connection is available, the connection might be metered or have a
small data limit. In such cases, it might be unacceptable to publish
crash reports since some publisher files can easily take up to several
dozens of megabytes.

Therefore, the Crash Reporting Library defines the following four
network levels:

1. NONE,

2. OTHER,

3. MOBILE and

4. WIFI

The NONE configuration means that Internet connection is not re-
quired for reporting crashes. This means the crash report is handled
locally and not meant to be published over a network.

The OTHER configuration represents less frequently used means of
connection, such as Ethernet connection on devices like Android TV
or handsets and tablets with Bluetooth tethering.

The MOBILE configuration represents connection using the mobile
data network. This type of connection is often limited or metered and
therefore mostly suitable for smaller crash reports, if any.

The WIFI configuration represents a Wi-Fi connection. This type of
connection is often unlimited and unmetered and the Crash Reporting
Library treats it as the most stable and suitable for crash reporting.

The minimal required connection level can be set using the config-
uration management (see Subsection 4.7.5). If the detected connection
is of a equal or of a higher level than the configured level, the crash re-
port is reported. Otherwise it is stored and the Crash Reporting Library
waits until a suitable connection is detected. For example when setting
the suitable connection to MOBILE, a crash report will be reported when
the device is connected via either Wi-Fi or mobile data network but,
not when using tethering or when the device is offline altogether.

62

4. Implementation

4.10.1 Offline Publisher

The Crash Reporting Library defines a special pseudo-publisher
named Offline Publisher that is implemented in the com.avg.zaap.
crashlibrary.offline.publisher.OfflinePublisher class. Unlike
the regular publishers, the Offline Publisher does not implement
the ICrashPublisher interface. Instead, it implements the com.avg.
zaap.crashlibrary.offline.publisher.IOfflinePublisher inter-
face that is virtually identical to ICrashPublisher. This prevents an
application developer from adding the Offline Publisher as a config-
ured publisher while keeping a unified API at the same time.

Unlike regular publishers, the purpose of the Offline Publisher is not
to publish the findings of a crash report but to rather store metadata
about the report. The Offline publisher moves the crash report to
the offline directory located within the application internal storage
space.

The Offline Publisher also serialises the instance of the ReportData
class containing the crash report metadata into a file named after the
BinPacker archive with an additional .metadata extension (i.e. for a
BinPacker archive named example.bp, the Offline Publisher would
write the metadata into a file named example.bp.metadata). The appli-
cation logic for serialising and deserialising the crash report metadata
is defined in the CrashMetadataWriter and CrashMetadataReader
classes respectively. Both classes are located in the com.avg.zaap.
crashlibrary.offline.publisher.metadata package.

Whenever the Crash Reporting Library detects a connectivity change,
the CrashReportingService checks whether the configured minimal
delay has passed and if so, it starts another publishing attempt. Each
time the Offline Publisher processes a crash report, it also increments
its publishing attempts count.

4.10.2 Publishing Attempts

Each crash report has a maximum amount of crash report publishing
attempts and a minimal time delay between two consequent attempts.
When a publishing strategy is unsuccessful (see Subsection 4.9.3), the
Crash Reporting Library waits for at least the specified delay before
starting another publishing attempt.

63

4. Implementation

When the maximal amount of crash reports is reached and none
of them have been successful, the crash report and its metadata are
permanently deleted and no more publishing attempts are performed.

4.11 Logging

This section defines the logging API used in the Crash Reporting Library
and the means of possible extension.

Android replaces the Java Logging API defined in the java.util.
logging package with its own. The standard Android Logging API for
Java is implemented in the android.util.Log class [58]. The Android
logging API defines the following severity levels:

1. VERBOSE (lowest severity),

2. DEBUG,

3. INFO,

4. WARNING,

5. ERROR and

6. ASSERT (highest severity).

#include <android/log.h>
__android_log_print(ANDROID_LOG_DEBUG, "Tag", "Message");

Source code 9: Logging a DEBUG Message Using Android NDK.

The Log class defines one character long methods for each sever-
ity except ASSERT. Therefore, VERBOSE messages can be logged using
Log#v, DEBUG messages using Log#d and so on. The Log class also de-
fines a jokingly named method Log#wtf (literally What a Terrible Failure;
reports a condition that should never happen) that logs with severity
ASSERT.

The Android logging API is also available from native code upon
including the log.h header file (see Source code 9).

64

4. Implementation

Figure 4.18: Class Diagram: Logging.

4.11.1 Logging API

The Crash Reporting Library uses the CrashLogger static class located
in the com.avg.zaap.crashlibrary.core.logger package as an en-
try point for all of its logging functionality. The CrashLogger class
is initialised during the Crash Reporting Library initialisation within
the CrashLib#init method call. CrashLogger automatically loads the
logger instance configured in the library configuration (see Subsec-
tion 4.7.6).

The CrashLogger API mirrors the API defined in the Android
Log class, using the same one character long method naming pattern.
Additionally, its methods also support string formatting using op-
tional varargs arguments. The main advantage of such approach is
the effortless compatibility with overwhelming majority of Android
applications.

The default logger for the Crash Reporting Library is implemented in
the com.avg.zaap.crashlibrary.core.logger.DefaultLogger class.

65

4. Implementation

The default logger logs messages only when used in the debug build of
the Crash Reporting Library (see Section 4.13). When using the release
build of the Crash Reporting Library, the default logger silently discards
all logging method calls.

The standalone BinUnPacker API uses a custom logger im-
plemented in the JavaSystemLogger located in the com.avg.zaap.
crashlibrary.core.logger package. The JavaSystemLogger prints
log messages with severity ERROR or ASSERT to the standard error out-
put. Messages with lower severity are printed to the standard output.

An application developer may also define its own logger by im-
plementing the com.avg.zaap.crashlibrary.core.logger.ILogger
interface and setting the implementation class in the configuration
management (see Subsection 4.7.6).

4.12 Testing

This section defines the testing strategy used to verify the Crash Re-
porting Library builds.

The testing strategy for the Crash Reporting Library involves unit
testing, integration testing and integration with the existing build and
automation infrastructure at AVG.

4.12.1 Unit Testing

This subsection describes the unit testing strategy for the Crash Re-
porting Library and the patterns used to support testability.

The Crash Reporting Library uses Java, the JUnit testing framework,
Mockito and PowerMock as its unit testing technologies of choice. The
unit test asserts are written using Java implementation of the Hamcrest
matchers [59]. Hamcrest provides a syntax more resembling a natural
language than the default junit.framework.Assert class does.

The Crash Reporting Library does not use any dependency injec-
tion framework in order to limit the third party dependencies the
Crash Reporting Library relies on. Instead, each class implements the
dependency factory design pattern.

The dependency factory design pattern prescribes that each class
also defines a factory interface and its default implementation (i.e.

66

4. Implementation

package com.example;
import android.content.Context;

public class Example {

private Context mContext;
private Dependency mDependency;

public Example(Context context) {
this(context, new ExampleFactory());

}

public Example(Context context,
IExampleFactory factory) {

mContext = context;
mDependency = factory.getDependency();

}

public boolean example(String value) {
return value.isEmpty();

}

}

Source code 10: Dependency Factory Pattern Example

for a class named Writer, there also exists an interface named
IWriterFactory and an implementation named WriterFactory lo-
cated in the same package, see Source code 10).

Each constructor that is meant for public API, calls another con-
structor of the same class with an additional formal argument of
the dependency factory interface type. All dependencies are to be
retrieved using getter methods of the dependency factory. Simply put,
the only classes that use the new keyword are factory implementations.

This way, all of the internal dependencies are easily mockable
using anonymous factory implementations (see Source code 11) and

67

4. Implementation

Mockito. Most of Android SDK dependencies can be mocked using
this approach as well.

The Crash Reporting Library intentionally avoids static classes and
methods as much as possible. This is due to static and final classes
and methods (including certain Android API calls) need to be tested
using PowerMockito and the PowerMock JUnit runner. Additionally,
even when using these, not every such construct is testable.

In case an implementation differs between debug and release
builds, both implementations are tested within the same test method.
In these cases, the test method contains a control structure that reads
the DEBUG field of the com.avg.zaap.crashlibrary.BuildConfig
class and adapts accordingly to the retrieved value.

Unit test methods use a different naming convention than regular
Java methods. The method name consists of three parts separated by
underscores: <tested method> _<input> _<expected output> .

This naming convention allows easier detection of the cause of
a failed test. The individual parts use the camel case notation (see
Source code 11).

The unit tests for a selected build type can be executed either using
Android Studio or by running a Gradle task (see Subsection 4.13.4).

4.12.2 Integration Testing

This subsection defines the integration testing strategy used to verify
builds of the Crash Reporting Library.

Android provides a UI testing framework named UIAutomator [60]
and a GUI tool for scanning and analysing UI named UI Automator
Viewer within the standard Android SDK.

AVG has developed a proprietary library named autolib for test
automation of desktop and mobile applications. The autolib library
provides two APIs: a PowerShell one for desktop applications and a
Python one for mobile applications. The Python API supports both
Android and iOS.

Unlike many other automation frameworks, tests written using the
autolib are not monolithic. Instead, they define a series of reusable
so-called steps. Steps are primarily meant to be independent of each
other although, in some cases one step may depend on the result of
another step.

68

4. Implementation

package com.example;

import static org.hamcrest.core.Is.is;
import static org.mockito.Mockito.mock;

import android.content.Context;

public class ExampleTests {
private Context mContext;
private Dependency mDependency;
private Example mExample;

@Before
public void setUp() {

mContext = mock(Context.class);
mDependency = mock(Dependency.class);
mExample = new Example(mContext, new

IExampleFactory {
@Override
public void Dependency getDependency() {

return mDependency;
}

});
}

@Test
public void example_emptyString_returnsTrue() {

assertThat(mExample.example(""), is(true));
}

@Test
public void example_nonEmptyString_returnsFalse() {

assertThat(mExample.example("test"), is(false));
}

}

Source code 11: Example of a Unit Test Structure.

69

4. Implementation

The test scenarios are written TSD domain-specific language based
on the JSON file format. TSDs support two-level hierarchy. Each TSD
contains one or more test cases. Each test case contains one or more
steps.

The test definitions are registered using the steps.new_step()
function call of the lib_python module. Each test definition has
to provide a human-readable step name and a pointer to its imple-
mentation function. Steps can be customised by adding formal ar-
guments in its human-readable name using brackets. The autolib
library automatically parses the step name and puts the parsed values
into a dictionary. The implementation function is called with the
dictionary containing the arguments as its formal argument.

Source code 12 demonstrates step customisation. Adding a step
named "Example step: hello world" to a TSD would print [hello,
world] to the standard output upon its execution.

Each step should call one of the following functions as its last
statement:

• execution.passed() (signalises success),

• execution.failed() (signalises failure, the test case may con-
tinue) or

• execution.error() (signalises critical failure, the test case ex-
ecution should be terminated).

from lib_python import steps, execution, logger

def example_step_function(params):
logger.debug("[{0}, {1}]".format(params["first"],

params["second"])
execution.passed()

steps.new_step("Example step: {first} {second}",
example_step_function)

Source code 12: Example Step Implementation in Python.

70

4. Implementation

These function calls allow the execution engine to determine the
step result and display it accordingly. Any uncaught exception is im-
plicitly treated as an execution.error() call.

In summary, the integration testing solution consists of these four
parts:

• autolib,

• the crash automation library,

• test definitions and

• TSDs.

The crash automation library adds additional functionality that is
specific for the Crash Reporting Library and is not covered by autolib.
This includes handling the mock CAP Server (see Subsection 4.12.3),
manipulation with the emulator using Telnet and managing sim-
ulated connection on an emulator. The library is located in the
automation/libcrashtest directory.

The test definitions are contained within a single Python module
that contains step implementations. Test definitions are located in the
automation/testdefinitions directory.

The TSDs are JSON files containing the test scenarios to verify
a Crash Reporting Library build. The Crash Reporting Library imple-
ments the TSDs listed below. All of these TSDs are located in the
automation/tsd directory.

CrashDialogDebug.tsd
This TSD tests the DIALOG configuration value of the
showErrorType configuration option for the debug build of the
Crash Reporting Library.

CrashDialogRelease.tsd
This TSD tests the DIALOG configuration value of the
showErrorType configuration option for the release build of
the Crash Reporting Library.

CrashErrorScreenDebug.tsd
This TSD tests the ERROR_SCREEN configuration value of the

71

4. Implementation

showErrorType configuration option for the debug build of the
Crash Reporting Library.

CrashErrorScreenRelease.tsd
This TSD tests the ERROR_SCREEN configuration value of the
showErrorType configuration option for the release build of
the Crash Reporting Library.

CrashNoneDebug.tsd
This TSD tests the NONE configuration value of the
showErrorType configuration option for the debug build
of the Crash Reporting Library.

CrasNoneRelease.tsd
This TSD tests the NONE configuration value of the
showErrorType configuration option for the release build of
the Crash Reporting Library.

CrashNotificationDebug.tsd
This TSD tests the NOTIFICATION configuration value of the
showErrorType configuration option for the debug build of the
Crash Reporting Library.

CrashNotificationRelease.tsd
This TSD tests the NOTIFICATION configuration value of the
showErrorType configuration option for the release build of
the Crash Reporting Library.

CrashToastDebug.tsd
This TSD tests the TOAST configuration value of the
showErrorType configuration option for the debug build
of the Crash Reporting Library.

CrashToastRelease.tsd
This TSD tests the TOAST configuration value of the
showErrorType configuration option for the release build of
the Crash Reporting Library.

CrashReportAll.tsd
This TSD tests the ALL publishing strategy using both CAP

72

4. Implementation

Crash Publisher (with mock CAP Server) and External Storage
Publisher.

CrashReportAny.tsd
This TSD tests the ANY publishing strategy using both CAP
Crash Publisher (with mock CAP Server) and External Storage
Publisher.

CrashReportBestEffort.tsd
This TSD tests the BEST_EFFORT publishing strategy using both
CAP Crash Publisher (with mock CAP Server) and External
Storage Publisher.

4.12.3 Mock CAP Server

This subsection describes the mock CAP Server implementation and
the API used during the testing of the Crash Reporting Library.

The mock CAP server provides the same API as the real imple-
mentation. Unlike the real implementation, the mock one does not
process the crash reports in any way and simply stores them in the file
system instead. The mock CAP server also provides additional APIs
for testing purposes. When started, the mock CAP server listens on
the port 8080.

The mock CAP server supports the URLs listed below. Unless
specified otherwise, the MIME type of each response is text/plain.

/report (POST)
This URL serves as an endpoint for reporting a new crash oc-
currence.

/upload (POST)
This URL serves as an endpoint for uploading a new crash
report.

/files (GET)
Lists all files uploaded to the server thus far. The list uses the
CRLF control characters as separators.

/file?guid=value (GET)
Returns the crash report file uploaded with given GUID value.
The MIME type of the response is application/octet-stream.

73

4. Implementation

/delete?guid=value (GET)
Deletes the crash report file previously uploaded with the given
GUID value.

/disable-server (GET)
Disables the mock server. When disabled, the mock CAP Server
always return -1 error as its response.

/enable-server (GET)
Enables the mock server if the mock server has been previously
disabled.

/uploading (GET)
Returns whether there is a file currently being uploaded to the
mock CAP Server.

4.12.4 Automation

This subsection defines the means of automation of the Crash Reporting
Library integration tests.

The integration tests can be started either manually using a tool
named TSD Debugger or using Final-CI. TSD Debugger is a propri-
etary tool developed by AVG for the development and execution of
TSDs (see Figure 4.19). TSD Debugger implements a server-client ar-
chitecture that allows running steps on real devices, local emulators
(emulators running on the host machine) and remote emulators (emu-
lators running on a remote or virtual machine). Unfortunately, certain
steps (i.e. emulating a roaming data connection) can only be performed
on an emulator.

Final-CI is a proprietary continuous integration framework build
upon Atlassian Bamboo. Final-CI provides custom adapter that allow
to process both JUnit and TSD test results. When running TSD tests,
Final-CI acquires a new instance of a virtual machine from a dedicated
pool. This virtual machine executes the Android emulator and starts
performing TSD steps one at a time.

Further details about the automation environment are undisclosed,
in compliance with AVG’s specific instruction.

74

4. Implementation

Figure 4.19: Example of a TSD Opened in TSD Debugger.

4.13 Building

This subsection describes the building process of the Crash Reporting
Library and its respective variants.

The Crash Reporting Library solutions is divided into the following
three Gradle submodules:

• lib (the actual Crash Reporting Library),

• simulator (the Simulator application used for testing) and

• capserver (the mock CAP Server implementation).

4.13.1 Building the Library

This subsection describes the build configurations of the Crash Report-
ing Library.

Android Studio automatically creates two build types for each
application or library project. These build types are named debug
and release. The Crash Reporting Library uses these two default build
types generated by Android Studio.

75

4. Implementation

Figure 4.20: Example of a Test Run Configuration in Final-CI.

The differences between debug and release build configurations
are described in Sections 4.5 and 4.11.

4.13.2 Building the Simulator

This subsection describes the build configurations of the Simulator
application.

Gradle supports so-called flavours. A flavour allows to divide
the codebase into a reusable core and flavour-related bits of code.
The code shared by all flavours is located in the src/main directory,
while the src/<flavour name> directory contains flavour-specific
implementations of Java classes and/or flavour specific Android XML
resources.

The Simulator application uses flavours to declare multiple con-
figurations of the Crash Reporting Library within a single application
project. The simulator offers 16 build configurations listed below.

activityDebug
This configuration uses the debug version of the Crash Report-
ing Library and configures the ERROR_SCREEN as its showError
configuration value.

76

4. Implementation

activityRelease
This configuration uses the release version of the Crash Report-
ing Library and configures the ERROR_SCREEN as its showError
configuration value.

dialogDebug
This configuration uses the debug version of the Crash Reporting
Library and configures the DIALOG as its showError configura-
tion value.

dialogRelease
This configuration uses the release version of the Crash Re-
porting Library and configures the DIALOG as its showError con-
figuration value.

noneDebug
This configuration uses the debug version of the Crash Reporting
Library and configures the NONE as its showError configuration
value.

noneRelease
This configuration uses the release version of the Crash Re-
porting Library and configures the NONE as its showError config-
uration value.

notificationDebug
This configuration uses the debug version of the Crash Report-
ing Library and configures the NOTIFICATION as its showError
configuration value.

notificationRelease
This configuration uses the release version of the Crash Report-
ing Library and configures the NOTIFICATION as its showError
configuration value.

toastDebug
This configuration uses the debug version of the Crash Reporting
Library and configures the TOAST as its showError configuration
value.

77

4. Implementation

toastRelease
This configuration uses the release version of the Crash Re-
porting Library and configures the TOAST as its showError con-
figuration value.

reportAnyBrokenSDDebug
This configuration uses the debug version of the Crash Reporting
Library. It configures the library to use the ANY publishing strat-
egy and adds the BrokenSDCardPublisher in the configuration
management.

reportAnyBrokenSDRelease
This configuration uses the release version of the Crash Report-
ing Library. It configures the library to use the ANY publishing
strategy in the configuration management.

reportAnyDebug
This configuration uses the debug version of the Crash Report-
ing Library. It configures the library to use the ANY publishing
strategy in the configuration management.

reportAnyRelease
This configuration uses the release version of the Crash Report-
ing Library. It configures the library to use the ANY publishing
strategy in the configuration management.

reportBestEffortDebug
This configuration uses the debug version of the Crash Report-
ing Library. It configures the library to use the BEST_EFFORT
publishing strategy in the configuration management.

reportBestEffortRelease
This configuration uses the release version of the Crash Re-
porting Library. It configures the library to use the BEST_EFFORT
publishing strategy in the configuration management.

4.13.3 Building the Mock CAP Server

This subsection describes the build configurations of the mock CAP
Server.

78

4. Implementation

The mock CAP server offers the two build configurations automat-
ically created by Android Studio: debug and release. Both of these
configurations are identical.

4.13.4 Additional Gradle Tasks

This subsection describes the additional Gradle tasks defined in the
build.gradle file.

The Crash Reporting Library project also defines several Gradle tasks
that simplify building multiple builds of different types at once.

buildCrashLibraryDebug
Builds the debug version of the Crash Reporting Library, all
debug configurations of the Simulator application and the mock
CAP server.

buildCrashLibraryRelease
Builds the release version of the Crash Reporting Library, all
release configurations of the Simulator application and the
mock CAP server.

buildCrashLibrary
Builds both versions of the Crash Reporting Library, all
build configurations of the Simulator application and the
mock CAP server. Depends on buildCrashLibraryDebug and
buildCrashLibraryRelease. This task is executed by Final-CI.

testCrashLibraryDebug
Runs JUnit tests for the debug version of the Crash Reporting
Library. Depends on buildCrashLibraryDebug.

testCrashLibraryRelease
Runs JUnit tests for the release version of the Crash Reporting
Library. Depends on buildCrashLibraryRelease.

testCrashLibrary
Runs JUnit tests for the all versions of the Crash Reporting Li-
brary. Depends on buildCrashLibrary.

79

4. Implementation

copyTestResults
Copies the JUnit tests results into the output folder observed by
Final-CI. Depends on buildCrashLibrary. This task is executed
by Final-CI.

4.14 Publishing

This section describes the artefact publishing process of the Crash
Reporting Library.

The common way of distributing Android libraries is the Android
Archive format, usually denoted by the .aar file extension. The format
itself is identical to standard Java .jar archive however, the .aar file
extension signalises that the library contains compiled classes in the
Dalvik Executable Format and is therefore incompatible with standard
Java Virtual Machine.

Therefore, Android libraries can be distributed in the same way as
their Java counterparts, using the same tools. Gradle provides com-
patibility with Maven and its POM (Project Object Model) [61].

AVG uses JFrog’s Artifactory [62], a universal repository manager
that supports Java, JavaScript, PHP, Python and Ruby libraries amongst
others. An artefact can be published using either the web interface
(see Figure 4.21) or using the Gradle Plug-in.

Figure 4.21: The Crash Reporting Library Artifactory Dossier.

The Crash Reporting Library uses the JFrog Artifactory Plug-in (de-
pendency com.jfrog.artifactory) for direct publishing into Artifac-

80

4. Implementation

tory. Gradle optionally uses Java Properties File Format for configura-
tion. Gradle automatically loads the gradle.properties files located
in home Gradle directory (%USERPROFILE%\.gradle on Windows or
~/.gradle on UNIX-based systems), in the main project directory
and in the submodule directory. This allows storing the Artifactory
credentials outside the actual project.

The Crash Reporting Library defines a custom Gradle task
named artifactoryPublish for publishing the library. The
artifactoryPublish task requires the following Gradle properties to
configured in one of the gradle.properties files:

• artifactory_contextUrl,

• artifactory_user and

• artifactory_password

The values specifying the Artifactory instance URL and the
user credentials are not disclosed for obvious reasons. The
artifactoryPublish task publishes both debug and release versions
of the Crash Reporting Library.

81

5 Conclusion

This thesis successfully fulfilled its outlined goals. A comparative
research and analysis of the crash reporting solutions available for
Android was performed. Since none of the considered solutions pro-
vided the desired level of universality and configurability, a custom
solution named Crash Reporting Library was implemented.

The implemented solution offers crash reporting of both managed
code and native code crashes, as requested. It does so using a unified
API. The solution collects the metadata required by the existing infras-
tructure and allows processing crashes of Android applications in the
same way as AVG’s portfolio of existing desktop applications does.

The developed solution offers extensive and easily maintainable
configuration management and due to its modular architecture, it
offers multiple ways of notifying the user amongst others. The con-
figuration management of the implemented solution offers various
extension points in order to allow easy implementation of application-
specific extensions.

The implemented architecture was documented using the Unified
Modelling Language. The source code was thoroughly documented
using the JavaDoc documenting syntax.

The Crash Reporting Library comes with a basic predefined sets of
providers and publishers, shortening the time necessary for setting up
a commonly used configuration.

A custom light-weight file format was developed in order to lower
the computation power needed for collecting and publishing crash
reports. A set of support tools for this file format was developed in
cooperation with the Quality Assurance Team in order to best suit
their needs.

Based on my proposal, the implemented solution offers advanced
connection handling, eliminating undesired data transfers on limited,
unstable and metered networks.

A detailed and comprehensive test strategy including unit tests,
integration tests and automation was designed and implemented
using the standard tools used by AVG. The build and verification
process is fully integrated into AVG’s infrastructure.

83

5. Conclusion

The implemented library was published in AVG’s standard library
repository, making it available for both existing and newly developed
Android applications.

The Crash Reporting Library is currently used by one application
developed by AVG and is ready for further development and exten-
sions.

Personally, working on the Crash Reporting Library was a tremen-
dous experience. It provided me with an opportunity to use multi-
ple programming languages and to get familiar with new and excit-
ing technologies. It was particularly interesting to be present during
all phases of application development and to see an enterprise-level
project (although a relatively small one) rise from the ground up.

I am absolutely positive that I will apply the knowledge gained dur-
ing the development of the Crash Reporting Library during my future
career.

84

Bibliography

1. ORACLE CORPORATION. Java Platform SE 7: NullPointerException.
2016. Available online [last revision 12 December 2017]
https://docs.oracle.com/javase/7/docs/api/java/lang/
NullPointerException.html.

2. XAMARIN, INC. Xamarin: Xamarin.Android. 2017. Available online
[last revision 12 December 2017]
https://developer.xamarin.com/api/root/MonoAndroid-lib/.

3. MEYER, K. Ruboto. 2017. Available online [last revision 12 December
2017]
https://web.archive.org/web/20161119184120/http://ruboto.
org:80/.

4. PROGRESS SOFTWARE CORPORATION. NativeScript: Home. 2017.
Available online [last revision 12 December 2017]
https://www.nativescript.org/.

5. JETBRAINS. Kotlin Programming Language. 2017. Available online [last
revision 12 December 2017]
https://kotlinlang.org/.

6. GOOGLE. Android Developers: WebView. 2017. Available online [last
revision 12 December 2017]
https://developer.android.com/reference/android/webkit/
WebView.html.

7. THE APACHE SOFTWARE FOUNDATION. Apache Harmony: Open
Source Java Platform. 2017. Available online [last revision 12 Decem-
ber 2017]
https://harmony.apache.org/.

8. ORACLE CORPORATION. OpenJDK. 2017. Available online [last revi-
sion 12 December 2017]
http://openjdk.java.net/.

9. MURPHY, M. L. The CommonsBlog: Musings on Android and the Open-
JDK. 2016. Available online [last revision 12 December 2017]
https://commonsware.com/blog/2016/01/07/musings-android-
openjdk.html.

85

https://docs.oracle.com/javase/7/docs/api/java/lang/NullPointerException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/NullPointerException.html
https://developer.xamarin.com/api/root/MonoAndroid-lib/
https://web.archive.org/web/20161119184120/http://ruboto.org:80/
https://web.archive.org/web/20161119184120/http://ruboto.org:80/
https://www.nativescript.org/
https://kotlinlang.org/
https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html
https://harmony.apache.org/
http://openjdk.java.net/
https://commonsware.com/blog/2016/01/07/musings-android-openjdk.html
https://commonsware.com/blog/2016/01/07/musings-android-openjdk.html

BIBLIOGRAPHY

10. NORBYE, T. Android Studio Project Site: Android Studio 0.3.2 Released.
2013. Available online [last revision 12 December 2017]
http://tools.android.com/recent/androidstudio032released.

11. GOOGLE. Android Developers: Use Java 8 Language Features. 2017. Avail-
able online [last revision 12 December 2017]
https://developer.android.com/guide/platform/j8- jack.
html.

12. LAU, J. Android Developers: Future of Java 8 Language Feature. 2017.
Available online [last revision 12 December 2017]
https : / / android - developers . googleblog . com / 2017 / 03 /
future-of-java-8-language-feature.html.

13. MEDNIEKS, Z.; DORNIN, L.; MEIKE, G. B.; NAKAMURA, M. Pro-
gramming Android, Second Edition. Sebastopol, California: O’Reilly
Media, 2012.

14. PYTHON SOFTWARE FOUNDATION. Python.org: About Python. 2017.
Available online [last revision 12 December 2017]
https://www.python.org/about/.

15. FREE SOFTWARE FOUNDATION. GNU Project: Free Software Foun-
dation: Bash. 2017. Available online [last revision 12 December 2017]
https://www.gnu.org/software/bash/.

16. GOOGLE. Android Studio: The Official IDE for Android. 2017. Available
online [last revision 12 December 2017]
https://developer.android.com/studio/index.html.

17. CHENG, B.; BUZBEE, B. A JIT Compiler for Android’s Dalvik VM. 2010.
Available online [last revision 12 December 2017]
https : / / dl . google . com / googleio / 2010 / android - jit -
compiler-androids-dalvik-vm.pdf.

18. GOOGLE. Android Developers: Android NDK. 2017. Available online
[last revision 12 December 2017]
https://developer.android.com/ndk/index.html.

19. ECMA INTERNATIONAL. Introducing JSON. 2017. Available online
[last revision 12 December 2017]
http://www.json.org/.

86

http://tools.android.com/recent/androidstudio032released
https://developer.android.com/guide/platform/j8-jack.html
https://developer.android.com/guide/platform/j8-jack.html
https://android-developers.googleblog.com/2017/03/future-of-java-8-language-feature.html
https://android-developers.googleblog.com/2017/03/future-of-java-8-language-feature.html
https://www.python.org/about/
https://www.gnu.org/software/bash/
https://developer.android.com/studio/index.html
https://dl.google.com/googleio/2010/android-jit-compiler-androids-dalvik-vm.pdf
https://dl.google.com/googleio/2010/android-jit-compiler-androids-dalvik-vm.pdf
https://developer.android.com/ndk/index.html
http://www.json.org/

BIBLIOGRAPHY

20. ATLASSIAN. Atlassian: Bamboo. 2017. Available online [last revision
12 December 2017]
https://www.atlassian.com/software/bamboo.

21. GOOGLE. Android Developers: Support Library. 2017. Available online
[last revision 12 December 2017]
https://developer.android.com/topic/libraries/support-
library/index.html.

22. JUNIT. JUnit: About. 2017. Available online [last revision 12 December
2017]
http://junit.org/.

23. FABER, S. Mockito framework site. 2017. Available online [last revision
12 December 2017]
http://site.mockito.org/.

24. ORACLE CORPORATION. Java Platform SE 7: RuntimeException. 2016.
Available online [last revision 12 December 2017]
https://docs.oracle.com/javase/7/docs/api/java/lang/
RuntimeException.html.

25. HALEBY, J. Mockito framework site. 2017. Available online [last revision
12 December 2017]
https://github.com/powermock/powermock.

26. GOOGLE. Google Git: Breakpad. 2017. Available online [last revision 12
December 2017]
https://chromium.googlesource.com/breakpad/breakpad.

27. GOOGLE. Crashpad: Project Status. 2017. Available online [last revision
12 December 2017]
https://chromium.googlesource.com/crashpad/crashpad/+/
HEAD/doc/status.md.

28. CUELLAR, D. Appium: Mobile App Automation Made Awesome. 2017.
Available online [last revision 12 December 2017]
http://appium.io/.

29. GOUCHER, A. SeleniumHQ Browser Automation: About Selenium. 2017.
Available online [last revision 12 December 2017]
http://www.seleniumhq.org/about/.

87

https://www.atlassian.com/software/bamboo
https://developer.android.com/topic/libraries/support-library/index.html
https://developer.android.com/topic/libraries/support-library/index.html
http://junit.org/
http://site.mockito.org/
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
https://github.com/powermock/powermock
https://chromium.googlesource.com/breakpad/breakpad
https://chromium.googlesource.com/crashpad/crashpad/+/HEAD/doc/status.md
https://chromium.googlesource.com/crashpad/crashpad/+/HEAD/doc/status.md
http://appium.io/
http://www.seleniumhq.org/about/

BIBLIOGRAPHY

30. HAWKE, P. GitHub: NanoHTTPD – Tiny, easily embeddable HTTP server.
2017. Available online [last revision 12 December 2017]
https://github.com/NanoHttpd/nanohttpd.

31. GAUDIN, K. ACRA: Know your bugs. 2013. Available online [last revi-
sion 12 December 2017]
http://www.acra.ch/.

32. GAUDIN, K. GitHub: Backends. 2017. Available online [last revision 12
December 2017]
https://github.com/ACRA/acra/wiki/Backends.

33. GAUDIN, K. Github: Acralyzer. 2015. Available online [last revision 12
December 2017]
https://github.com/ACRA/acralyzer.

34. SMIRNOV, A. GitHub: Acra-breakpad. 2014. Available online [last revi-
sion 12 December 2017]
https://github.com/4ntoine/Acra-breakpad.

35. SMIRNOV, A. GitHub: 4ntoine/acra. 2014. Available online [last revision
12 December 2017]
https://github.com/4ntoine/acra.

36. GOOGLE. Android Developers: Toasts. 2017. Available online [last revi-
sion 12 December 2017]
https://developer.android.com/guide/topics/ui/notifiers/
toasts.html.

37. MICROSOFT. HockeyApp Joins Microsoft. 2014. Available online [last
revision 12 December 2017]
https://www.hockeyapp.net/blog/2014/12/11/hockeyapp-
joins-microsoft.html.

38. MICROSOFT. HockeyApp Support: How to use ACRA with HockeyApp.
2016. Available online [last revision 12 December 2017]
https : / / support . hockeyapp . net / kb / client - integration -
android/how-to-use-acra-with-hockeyapp.

39. OWEN, T. Twitter Is Buying A Startup, Crashlytics, And Not Killing It
Off For A Change. 2013. Available online [last revision 12 December
2017]
http : / / www . businessinsider . com / twitter - acquires -
crashlytics-2013-1.

88

https://github.com/NanoHttpd/nanohttpd
http://www.acra.ch/
https://github.com/ACRA/acra/wiki/Backends
https://github.com/ACRA/acralyzer
https://github.com/4ntoine/Acra-breakpad
https://github.com/4ntoine/acra
https://developer.android.com/guide/topics/ui/notifiers/toasts.html
https://developer.android.com/guide/topics/ui/notifiers/toasts.html
https://www.hockeyapp.net/blog/2014/12/11/hockeyapp-joins-microsoft.html
https://www.hockeyapp.net/blog/2014/12/11/hockeyapp-joins-microsoft.html
https://support.hockeyapp.net/kb/client-integration-android/how-to-use-acra-with-hockeyapp
https://support.hockeyapp.net/kb/client-integration-android/how-to-use-acra-with-hockeyapp
http://www.businessinsider.com/twitter-acquires-crashlytics-2013-1
http://www.businessinsider.com/twitter-acquires-crashlytics-2013-1

BIBLIOGRAPHY

40. PARET, R. Fabric is Joining Google. 2017. Available online [last revision
12 December 2017]
https://fabric.io/blog/fabric-joins-google.

41. PEREZ, S. Twitter’s Mobile Crash Reporting Tool Crashlytics Arrives On
Android. 2013. Available online [last revision 12 December 2017]
https://techcrunch.com/2013/05/30/twitters-mobile-crash-
reporting-tool-crashlytics-arrives-on-android/.

42. FABRIC. Fabric for Android: Build Tools. 2017. Available online [last
revision 12 December 2017]
https://docs.fabric.io/android/crashlytics/build-tools.
html.

43. GOOGLE. Android Developers: Service. 2014. Available online [last re-
vision 12 December 2017]
https : / / developer . android . com / guide / topics / manifest /
service-element.html.

44. ORACLE CORPORATION. Java Platform SE 7: Throwable. 2016. Avail-
able online [last revision 12 December 2017]
https://docs.oracle.com/javase/7/docs/api/java/lang/
Throwable.html.

45. ORACLE CORPORATION. Java Platform SE 7: Error. 2016. Available
online [last revision 12 December 2017]
https://docs.oracle.com/javase/7/docs/api/java/lang/
Error.html.

46. ORACLE CORPORATION. Java SE Documentation: JNI Functions. 2014.
Available online [last revision 12 December 2017]
http://docs.oracle.com/javase/7/docs/technotes/guides/
jni/spec/functions.html.

47. GOOGLE. Create Hello-CMake with Android Studio. 2017. Available on-
line [last revision 12 December 2017]
https://codelabs.developers.google.com/codelabs/android-
studio-cmake/#0.

48. ORACLE CORPORATION. Java Platform SE 7: System. 2017. Available
online [last revision 12 December 2017]
https://docs.oracle.com/javase/7/docs/api/java/lang/
System.html.

89

https://fabric.io/blog/fabric-joins-google
https://techcrunch.com/2013/05/30/twitters-mobile-crash-reporting-tool-crashlytics-arrives-on-android/
https://techcrunch.com/2013/05/30/twitters-mobile-crash-reporting-tool-crashlytics-arrives-on-android/
https://docs.fabric.io/android/crashlytics/build-tools.html
https://docs.fabric.io/android/crashlytics/build-tools.html
https://developer.android.com/guide/topics/manifest/service-element.html
https://developer.android.com/guide/topics/manifest/service-element.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Error.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Error.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://codelabs.developers.google.com/codelabs/android-studio-cmake/#0
https://codelabs.developers.google.com/codelabs/android-studio-cmake/#0
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html

BIBLIOGRAPHY

49. FREE SOFTWARE FOUNDATION. The GNU C Library. 2014. Available
online [last revision 12 December 2017]
https://www.gnu.org/software/libc/manual/html_mono/libc.
html#Signal-and-Sigaction.

50. GOOGLE. Android Developers: Android NDK Native APIs. 2017. Avail-
able online [last revision 12 December 2017]
https://developer.android.com/ndk/guides/stable_apis.
html.

51. GOOGLE. Git at Google: Breakpad. 2017. Available online [last revision
12 December 2017]
https://chromium.googlesource.com/breakpad/breakpad/.

52. GOOGLE. Getting Started with Breakpad. 2017. Available online [last
revision 12 December 2017]
https : / / github . com / google / breakpad / blob / master / docs /
getting_started_with_breakpad.md.

53. GOOGLE. Linux Syscall Support (LSS). 2017. Available online [last re-
vision 12 December 2017]
https : / / chromium . googlesource . com / linux - syscall -
support/.

54. GOOGLE. Android Developers: Manifest.permission. 2017. Available on-
line [last revision 12 December 2017]
https://developer.android.com/reference/android/Manifest.
permission.html#SYSTEM_ALERT_WINDOW.

55. PRESTON-WERNER, T. Semantic Versioning 2.0.0. 2017. Available on-
line [last revision 12 December 2017]
https://semver.org/.

56. GOOGLE. Android Developers: Status Bar Icons. 2017. Available online
[last revision 12 December 2017]
https : / / developer . android . com / guide / practices / ui _
guidelines/icon_design_status_bar.html.

57. ORACLE CORPORATION. Java Platform SE 7: Package java.util.zip.
2017. Available online [last revision 12 December 2017]
https://docs.oracle.com/javase/7/docs/api/java/util/zip/
package-summary.html.

90

https://www.gnu.org/software/libc/manual/html_mono/libc.html#Signal-and-Sigaction
https://www.gnu.org/software/libc/manual/html_mono/libc.html#Signal-and-Sigaction
https://developer.android.com/ndk/guides/stable_apis.html
https://developer.android.com/ndk/guides/stable_apis.html
https://chromium.googlesource.com/breakpad/breakpad/
https://github.com/google/breakpad/blob/master/docs/getting_started_with_breakpad.md
https://github.com/google/breakpad/blob/master/docs/getting_started_with_breakpad.md
https://chromium.googlesource.com/linux-syscall-support/
https://chromium.googlesource.com/linux-syscall-support/
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://semver.org/
https://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html
https://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html
https://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html

BIBLIOGRAPHY

58. GOOGLE. Android Developers: Log. 2017. Available online [last revision
12 December 2017]
https://developer.android.com/reference/android/util/Log.
html.

59. HAMCREST.ORG. Java Hamcrest. 2012. Available online [last revision
12 December 2017]
http://hamcrest.org/JavaHamcrest/.

60. GOOGLE. Android Developers: UI Automator. 2017. Available online
[last revision 12 December 2017]
https : / / developer . android . com / training / testing / ui -
automator.html.

61. THE APACHE SOFTWARE FOUNDATION. Maven: POM Reference.
2017. Available online [last revision 12 December 2017]
https://maven.apache.org/pom.html.

62. JFROG. Android Developers: UI Automator. 2017. Available online [last
revision 12 December 2017]
https://www.jfrog.com/artifactory/.

91

https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/reference/android/util/Log.html
http://hamcrest.org/JavaHamcrest/
https://developer.android.com/training/testing/ui-automator.html
https://developer.android.com/training/testing/ui-automator.html
https://maven.apache.org/pom.html
https://www.jfrog.com/artifactory/

	Introduction
	The Problem Defined
	 The Nature of Failures on Android
	 Reporting Crashes

	Technologies Used
	 Programming Languages
	 Tools
	 Libraries

	Implementation
	 Analysis of Existing Solutions
	 ACRA
	 HockeyApp
	 Crashlytics

	 Architecture Concept
	 Handling Managed Code Crashes
	 Collecting Metadata

	 Handling Native Code Crashes
	 Google Breakpad Integration
	 Initialising the Native Code Handler
	 Collecting Metadata

	 Notifying the User
	 Providing Crash Data
	 Default Synchronous Providers
	 Default Asynchronous Providers

	 Configuration Management
	 Application Identification Options
	 User Notification Options
	 Provider Options
	 Data Publishing Options
	 Connection Options
	 Logging Options

	 Packaging of collected data
	 The BinPacker File Format
	 BinPacker API
	 Support Tools

	 Data Publishing
	 CAP Crash Publisher
	 External Storage Publisher
	 Publishing Strategies

	 Connection Handling
	 Offline Publisher
	 Publishing Attempts

	 Logging
	 Logging API

	 Testing
	 Unit Testing
	 Integration Testing
	 Mock CAP Server
	 Automation

	 Building
	 Building the Library
	 Building the Simulator
	 Building the Mock CAP Server
	 Additional Gradle Tasks

	 Publishing

	Conclusion
	Bibliography

